Skip to contents

All functions

FinemappingConvergence
Simulated Fine-mapping Data with Convergence Problem.
N2finemapping
Simulated Fine-mapping Data with Two Effect Variables
N3finemapping
Simulated Fine-mapping Data with Three Effect Variables.
SummaryConsistency
Simulated Fine-mapping Data with LD matrix From Reference Panel.
coef(<susie>)
Extract regression coefficients from susie fit
compute_ss()
Compute sufficient statistics for input to susie_suff_stat
compute_suff_stat()
Compute sufficient statistics for input to susie_suff_stat
estimate_s_rss()
Estimate s in susie_rss Model Using Regularized LD
get_cs_correlation()
Get Correlations Between CSs, using Variable with Maximum PIP From Each CS
kriging_rss()
Compute Distribution of z-scores of Variant j Given Other z-scores, and Detect Possible Allele Switch Issue
predict(<susie>)
Predict outcomes or extract coefficients from susie fit.
summary(<susie>) print(<summary.susie>)
Summarize Susie Fit.
susie() susie_suff_stat()
Sum of Single Effects (SuSiE) Regression
susie_auto()
Attempt at Automating SuSiE for Hard Problems
susie_get_objective() susie_get_posterior_mean() susie_get_posterior_sd() susie_get_niter() susie_get_prior_variance() susie_get_residual_variance() susie_get_lfsr() susie_get_posterior_samples() susie_get_cs() susie_get_pip()
Inferences From Fitted SuSiE Model
susie_init_coef()
Initialize a susie object using regression coefficients
susie_plot_changepoint()
Plot changepoint data and susie fit using ggplot2
susie_plot() susie_plot_iteration()
SuSiE Plots.
susie_rss()
Sum of Single Effects (SuSiE) Regression using Summary Statistics
susie_trendfilter()
Apply susie to trend filtering (especially changepoint problems), a type of non-parametric regression.
univariate_regression()
Perform Univariate Linear Regression Separately for Columns of X