Package index
-
FinemappingConvergence
- Simulated Fine-mapping Data with Convergence Problem.
-
N2finemapping
- Simulated Fine-mapping Data with Two Effect Variables
-
N3finemapping
- Simulated Fine-mapping Data with Three Effect Variables.
-
SummaryConsistency
- Simulated Fine-mapping Data with LD matrix From Reference Panel.
-
coef(<susie>)
- Extract regression coefficients from susie fit
-
compute_ss()
- Compute sufficient statistics for input to
susie_suff_stat
-
compute_suff_stat()
- Compute sufficient statistics for input to
susie_suff_stat
-
estimate_s_rss()
- Estimate s in
susie_rss
Model Using Regularized LD
-
get_cs_correlation()
- Get Correlations Between CSs, using Variable with Maximum PIP From Each CS
-
kriging_rss()
- Compute Distribution of z-scores of Variant j Given Other z-scores, and Detect Possible Allele Switch Issue
-
predict(<susie>)
- Predict outcomes or extract coefficients from susie fit.
-
summary(<susie>)
print(<summary.susie>)
- Summarize Susie Fit.
-
susie()
susie_suff_stat()
- Sum of Single Effects (SuSiE) Regression
-
susie_auto()
- Attempt at Automating SuSiE for Hard Problems
-
susie_get_objective()
susie_get_posterior_mean()
susie_get_posterior_sd()
susie_get_niter()
susie_get_prior_variance()
susie_get_residual_variance()
susie_get_lfsr()
susie_get_posterior_samples()
susie_get_cs()
susie_get_pip()
- Inferences From Fitted SuSiE Model
-
susie_init_coef()
- Initialize a susie object using regression coefficients
-
susie_plot_changepoint()
- Plot changepoint data and susie fit using ggplot2
-
susie_plot()
susie_plot_iteration()
- SuSiE Plots.
-
susie_rss()
- Sum of Single Effects (SuSiE) Regression using Summary Statistics
-
susie_trendfilter()
- Apply susie to trend filtering (especially changepoint problems), a type of non-parametric regression.
-
univariate_regression()
- Perform Univariate Linear Regression Separately for Columns of X