All functions

coef(<ebnm>)

Extract posterior means from a fitted EBNM model

confint(<ebnm>)

Obtain credible intervals using a fitted EBNM model

ebnm() ebnm_output_default() ebnm_output_all()

Solve the EBNM problem

ebnm_add_sampler()

Add sampler to an ebnm_object

ebnm_ash()

Solve the EBNM problem using an ash family of distributions

ebnm_check_fn()

Check a custom ebnm function

ebnm_deconvolver()

Solve the EBNM problem using the "deconvolveR" family of distributions

ebnm_flat()

Solve the EBNM problem using a flat prior

ebnm_generalized_binary()

Solve the EBNM problem using generalized binary priors

ebnm_group()

Solve the EBNM problem for grouped data

ebnm_horseshoe()

Solve the EBNM problem using horseshoe priors

ebnm_normal()

Solve the EBNM problem using normal priors

ebnm_normal_scale_mixture()

Solve the EBNM problem using scale mixtures of normals

ebnm_npmle()

Solve the EBNM problem using the family of all distributions

ebnm_point_exponential()

Solve the EBNM problem using point-exponential priors

ebnm_point_laplace()

Solve the EBNM problem using point-Laplace priors

ebnm_point_mass()

Solve the EBNM problem using a point mass prior

ebnm_point_normal()

Solve the EBNM problem using point-normal priors

ebnm_scale_normalmix()

Set scale parameter for scale mixtures of normals

ebnm_scale_npmle()

Set scale parameter for NPMLE and deconvolveR prior family

ebnm_scale_unimix()

Set scale parameter for nonparametric unimodal prior families

ebnm_unimodal()

Solve the EBNM problem using unimodal distributions

ebnm_unimodal_nonnegative()

Solve the EBNM problem using unimodal nonnegative distributions

ebnm_unimodal_nonpositive()

Solve the EBNM problem using unimodal nonpositive distributions

ebnm_unimodal_symmetric()

Solve the EBNM problem using symmetric unimodal distributions

fitted(<ebnm>)

Extract posterior estimates from a fitted EBNM model

gammamix()

Constructor for gammamix class

horseshoe()

Constructor for horseshoe class

laplacemix()

Constructor for laplacemix class

logLik(<ebnm>)

Extract the log likelihood from a fitted EBNM model

nobs(<ebnm>)

Get the number of observations used to fit an EBNM model

plot(<ebnm>)

Plot an ebnm object

predict(<ebnm>)

Use the estimated prior from a fitted EBNM model to solve the EBNM problem for new data

print(<ebnm>)

Print an ebnm object

print(<summary.ebnm>)

Print a summary.ebnm object

quantile(<ebnm>)

Obtain posterior quantiles using a fitted EBNM model

residuals(<ebnm>)

Calculate residuals for a fitted EBNM model

simulate(<ebnm>)

Sample from the posterior of a fitted EBNM model

summary(<ebnm>)

Summarize an ebnm object

vcov(<ebnm>)

Extract posterior variances from a fitted EBNM model

wOBA

2022 MLB wOBA Data