Solves the empirical Bayes normal means (EBNM) problem using a
"non-informative" improper uniform prior, which yields posteriors
$$\theta_j | x_j, s_j \sim N(x_j, s_j^2).$$ Identical to function
ebnm
with argument prior_family = "flat"
. For details
about the model, see ebnm
.
ebnm_flat(
x,
s = 1,
g_init = NULL,
fix_g = FALSE,
output = ebnm_output_default()
)
A vector of observations. Missing observations (NA
s) are
not allowed.
A vector of standard errors (or a scalar if all are equal). Standard errors may not be exactly zero, and missing standard errors are not allowed.
Not used by ebnm_flat
, but included for consistency
with other ebnm
functions.
Not used by ebnm_flat
, but included for consistency
with other ebnm
functions.
A character vector indicating which values are to be returned.
Function ebnm_output_default()
provides the default return values, while
ebnm_output_all()
lists all possible return values. See Value
below.
An ebnm
object. Depending on the argument to output
, the
object is a list containing elements:
data
A data frame containing the observations x
and standard errors s
.
posterior
A data frame of summary results (posterior means, standard deviations, second moments, and local false sign rates).
fitted_g
The fitted prior \(\hat{g}\).
log_likelihood
The optimal log likelihood attained, \(L(\hat{g})\).
posterior_sampler
A function that can be used to
produce samples from the posterior. The sampler takes a single
parameter nsamp
, the number of posterior samples to return per
observation.
S3 methods coef
, confint
, fitted
, logLik
,
nobs
, plot
, predict
, print
, quantile
,
residuals
, simulate
, summary
, and vcov
have been implemented for ebnm
objects. For details, see the
respective help pages, linked below under See Also.
See ebnm
for examples of usage and model details.
Available S3 methods include coef.ebnm
,
confint.ebnm
,
fitted.ebnm
, logLik.ebnm
,
nobs.ebnm
, plot.ebnm
,
predict.ebnm
, print.ebnm
,
print.summary.ebnm
, quantile.ebnm
,
residuals.ebnm
, simulate.ebnm
,
summary.ebnm
, and vcov.ebnm
.