Creates a horseshoe prior (see Carvalho, Polson, and Scott (2010)). The horseshoe is usually parametrized as \(\theta_i \sim N(0, s^2 \tau^2 \lambda_i^2)\), \(\lambda_i \sim \mathrm{Cauchy}^+(0, 1)\), with \(s^2\) the variance of the error distribution. We use a single parameter scale, which corresponds to \(s\tau\) and thus does not depend on the error distribution.

horseshoe(scale)

Arguments

scale

The scale parameter (must be a scalar).

Value

An object of class horseshoe (a list with a single element

scale, described above).