All functions

contrast_matrix()

Create contrast matrix

cov_canonical()

Compute a list of canonical covariance matrices

cov_ed()

Perform "extreme deconvolution" (Bovy et al) on a subset of the data

cov_flash()

Perform Empirical Bayes Matrix Factorization using flashier, and return a list of candidate covariance matrices

cov_pca()

Perform PCA on data and return list of candidate covariance matrices

cov_udi()

Compute a list of covariance matrices corresponding to the "Unassociated", "Directly associated" and "Indirectly associated" models

estimate_null_correlation_simple()

Estimate null correlations (simple)

extreme_deconvolution()

Density estimation using Gaussian mixtures in the presence of noisy, heterogeneous and incomplete data

get_estimated_pi()

Return the estimated mixture proportions

get_log10bf()

Return the Bayes Factor for each effect

get_n_significant_conditions()

Count number of conditions each effect is significant in

get_pairwise_sharing()

Compute the proportion of (significant) signals shared by magnitude in each pair of conditions, based on the poterior mean

get_pairwise_sharing_from_samples()

Compute the proportion of (significant) signals shared by magnitude in each pair of conditions

get_samples()

Return samples from a mash object

get_significant_results()

Find effects that are significant in at least one condition

mash()

Apply mash method to data

mash_1by1()

Perform condition-by-condition analyses

mash_compute_loglik()

Compute loglikelihood for fitted mash object on new data.

mash_compute_posterior_matrices()

Compute posterior matrices for fitted mash object on new data

mash_compute_vloglik()

Compute vector of loglikelihood for fitted mash object on new data

mash_estimate_corr_em()

Fit mash model and estimate residual correlations using EM algorithm

mash_plot_meta()

Plot metaplot for an effect based on posterior from mash

mash_set_data()

Create a data object for mash analysis.

mash_update_data()

Update the data object for mash analysis.

sim_contrast1()

Create simplest simulation, cj = mu 1 data used for contrast analysis

sim_contrast2()

Create simulation with signal data used for contrast analysis.

simple_sims()

Create some simple simulated data for testing purposes

simple_sims2()

Create some more simple simulated data for testing purposes