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ABSTRACT

We extend the Sum of Single Effects (SuSiE) model - a Bayesian approach to variables

selection in linear regression, to SuSiE-mixture model. SuSiE model assumes a slab-and-

spike prior on the regression coefficients, and we generalize the prior to a mixture-Gaussian

distribution centered at 0. We also extend the corresponding fitting procedure - Iterative

Bayesian Stepwise Selection (IBSS) - which is a Bayesian analogue of stepwise selection

methods. Specifically we introduce an additional ridge regression step to IBSS, based on

variational approximation to the posterior distribution under the SuSiE-mixture model. Our

methods provide extra flexibility to SuSiE model, and reduce the false-positive significantly.

We demonstrate through simulated experiments.
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CHAPTER 1

INTRODUCTION

Variable selection in linear regression has been an important problem for a long time, and

it has a large range of methods and potential applications (Desboulets, 2018). The Sum of

Single Effect (SuSiE) model (Wang et al., 2018) is a very recent work in Bayesian variable

selection in linear regression. Motivated by genetic fine-mapping problems (Veyrieras et al.,

2008; Schaid et al., 2018), the SuSiE model is particularly helpful when the explanatory

variables are highly correlated, and the true regression coefficients are extremely sparse. Also,

it provides a new and effective way to capture the uncertainty of the variable selection. The

SuSiE model provides the posterior inclusion probability (PIP) for each variable, measuring

the probability that a variable has a non-zero regression coefficient when the data is given.

However, in some cases, the highly sparsity assumption on the regression coefficients

might be too strong. A more flexible assumption is, the majority of the regression coefficients

is small but non-zero. In this paper, we extend the prior of the regression coefficients in the

SuSiE model to this more flexible case. We call it the “SuSiE-mixture” model, because

the marginal prior distribution of the regression coefficient is mixture-Gaussian, instead

of “spike-and-slab” in the SuSiE model. Under appropriate settings, the “SuSiE-mixture”

model outperforms the SuSiE model in variable selection.

The SuSiE model has a fast fitting procedure Iterative Bayesian Stepwise Selection

(IBSS), which computes the variational approximation to the posterior probability. We

follow this idea and derive a variational inference algorithm for the SuSiE-mixture model.

The structure of the paper goes as follows. In Chapter 2, we introduce the SuSiE model

and further details. In Chapter 3, we provide the formulation of our model and the fitting

algorithm. In Chapter 4, we compare our model with the SuSiE model, and demonstrate

the difference in the estimated PIP. In Chapter 5 we end with a discussion of the limitations

in our work.
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CHAPTER 2

BACKGROUND

2.1 Introduction to the SuSiE model

The SuSiE model is an extension of the single effect regression (SER) model (Servin and

Stephens, 2007). In the SER model we assume exactly one of the p explanatory variables has

a non-zero coefficient. The SER model is easy to fit and provides useful inference result. Its

further applications includes Pickrell (2014).

The SuSiE model extends the assumption of the SER model, assuming the effect to be

the sum of a few “single effect” in the SER model . In other word, the SuSiE model assumes

there are at most L non-zero regression coefficients in the linear regression model, where L

is a pre-specified constant. Also we need L << p, where p is the number of the explanatory

variables. Compared to the conventional Bayesian Variable Selection Regression (BVSR)

(Mitchell and Beauchamp, 1988), the SuSiE model has a brand new modeling:

y = Xb + e (2.1)

e ∼ N(0, σ2In) (2.2)

b =
L∑
l=1

bl (2.3)

bl = γlbl (2.4)

γl ∼Mult(1,π) (2.5)

bl ∼ N(0, σ20l). (2.6)

Here, y is the vector of response data with dimension n; X = [x1,x2, . . . ,xp] is an n× p

data matrix with n observations of p explanatory variables; e is the independent error terms;

2



b is the p-vector of regression coefficients, it is the sum of L “single effects” b1, . . . ,bL; each

of those “single effects” bl has a indicator variable γl ∈ {0, 1}p, denoting which explanatory

variable has the non-zero coefficient; also b1, . . . , bL are scalars representing the specific size of

the “single effect”; Mult(1,π) denotes the multinomial distribution on class counts obtained

when only 1 sample is drawn with class probabilities given by π, specifically it is a p-vector

with only one element to be 1 and all the other elements to be 0; σ201, . . . , σ
2
0L are the prior

variances of the size of “single effects”.

Also, we assume that y and the columns of X have been centered to have mean zero,

so that we can avoid the intercept term. For the normal case where we don’t have a

specific preference for any of those explanatory variables in the prior, we can simply set

π = (1/p, . . . , 1/p).

2.2 Posterior inclusion probability

While the SuSiE model has a big range of applications, here we focus on the variable selection

problem. Specifically we are interested in the marginal posterior inclusion probability

PIPj := P(bj 6= 0|X,y), 1 ≤ j ≤ p. (2.7)

Where bj is the j-th element of b. The PIP measures how likely the j-th variable is a

true factor given the data. It is very helpful in capturing the uncertainty in the variable

selection procedure. The SuSiE model can compute the PIP effectively. In this paper, we

compare the PIP with the true label of variables to measure the performance for different

models. We will go through further details in the following chapters.
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CHAPTER 3

THE SUSIE-MIXTURE MODEL

3.1 Generalize the prior assumption

In the SuSiE model, each of the L single effects b1, . . . ,bL has exactly one non-zero coefficient

out of the p possible variables. Let
∑L
l=1 bl = b = (β1, β2, . . . , βp)

T . For a regression

coefficient βj (1 ≤ j ≤ p), if it happens to be “the none-zero one” in some bl where

1 ≤ l ≤ L, then βj will be non-zero. Otherwise βj has to be zero. Thus the marginal prior

distribution of βj is spike-and-slab: it has a point mass at zero, and a curve density peaked

at zero.

The SuSiE model assumes the coefficients of those irrelevant variables to be exactly zero.

However, a more flexible assumption is, the irrelevant variables may have small effects on

the response, instead of having no effect. And of course, the relevant variables have a strong

influence on the response. In the original BVSR setting, we try to select any non-zero effects.

While in this setting, the goal of variable selection is to find the variables with a large effect,

and ignore those with a small effect. Specifically, we modify the point mass in the spike-

and-slab prior, to a Gaussian distribution centered at zero with a very small variance σ2b .

Then the prior of the regression coefficient becomes a mixture-Gaussian distribution. This

assumption is a more general case (when σ2b = 0, it degenerates to the original spike-and-slab

prior) and it allows more flexibility (Zhou et al., 2013). In many settings it matches the real

case better. Figure 3.1 intuitively shows the difference of the two prior distributions.

3.2 Model settings

We apply the new mixture-Gaussian prior to the SuSiE model, and get the formulation of

the SuSiE-mixture model as follows
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Figure 3.1: Different prior distributions of the regression coefficient
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y = Xb0 + Xb + e (3.1)

e ∼ N(0, σ2In) (3.2)

b =
L∑
l=1

bl (3.3)

b0 ∼ N(0, σ2b Ip) (3.4)

bl = γlbl, 1 ≤ l ≤ L (3.5)

γl ∼Mult(1,π) (3.6)

bl ∼ N(0, σ20l). (3.7)

The additional p-vector b0 represents the small effects for all variables. Those small

effects are independent to each other, and share the same prior variance σ2b .

A notable fact is that, if we let L = 0, i.e. no “single effects”, then the SuSiE-mixture

model is equivalent to ridge regression. In fact, solving ridge regression plays an important

role in fitting the SuSiE-mixture model.

3.3 Model fitting

The PIP is critical in handling the uncertainty in variable selection, in this paper we also

focus on calculating the PIP for the SuSiE-mixture model. The definition of PIP is the same

as in the SuSiE model (see equation 2.7). Although we introduce an additional term b0 to

the model, as long as we estimate the posterior distribution of (b1, . . . ,bL), b0 is no longer

involved in computing the PIP.

We make an intuitive comparison between SuSiE and SuSiE-mixture. In the SuSiE-

mixture model, some signals in the data will be attributed to the additional term b0, and

can no longer be the evidence for those “single effects”. Hence we will make fewer discoveries
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than the SuSiE model does. Also, the larger σ2b is, the more signals b0 will be in charge of,

the less “single effects” we can finally discover.

As we noted, the SuSiE-mixture model is closely related to ridge regression. Note that

in the Bayesian form of ridge regression

y = Xβ + ε,

β ∼ N(0, σ2b Ip),

ε ∼ N(0, In).

Compare with the optimization form of ridge regression

β̂ = arg min
β
‖y−Xβ‖22 + λ‖β‖22.

When the tuning parameter λ = σ2/σ2b , the estimated β̂ are exactly the same for both

forms. If the tuning parameter λ is known, i.e. (σ2/σ2b ) is known, then fitting ridge regression

will be simple. Analogously, in the SuSiE-mixture model, if we know the value of σ2b/σ
2, the

fitting procedure will be easy and neat.

3.3.1 Algorithm for known σ2b/σ
2

In this algorithm, we need the function for Choleski decomposition: given a positive semi-

definite matrix S, return a lower triangular matrix L s.t. LLT = S.

We also need the SuSiE function: given the data X,y, and the number of “single effects”

L, return the PIP. See the detail in Wang et al. (2018).
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Algorithm 1 Fit SuSiE-mixture for known σ2b/σ
2

Given X,y, L, r = σ2b/σ
2

S ← rXXT + In

L← Cholesky(S)

X̃← L−1X

ỹ← L−1y

PIP ← susie(X̃, ỹ, L)

Return PIP .

See the derivation in Appendix A.

3.3.2 For unknown σ2b/σ
2

In most practical cases, the ratio σ2b/σ
2 is unknown, and we need to estimate it. We modify

the algorithm for fitting SuSiE - Iterative Bayesian Stepwise Selection (IBSS), to fit our

model.

In IBSS, we iteratively updating each “single effect” until it converges. The additional

term b0 introduced to SuSiE-mixture can be viewed as another “single effect”, thus we

update b0 together with other “single effects”.

Each updating step is an empirical Bayes method. When fitting each “single effect”, we

find the maximal likelihood estimator for σ20l, and update the “single effect” with this MLE.

For b0, we use a similar approach. But instead of maximizing the likelihood, which can

be very complex, we maximize the evidence lowerbound (ELBO). ELBO is a lowerbound of

log-likelihood based on variational inference (Blei et al., 2017). See Appendix B for more

details about maximizing the ELBO. The whole algorithm is showed as follows.
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Algorithm 2 Fit SuSiE-mixture for unknown σ2b/σ
2

while not converge do

r̄ ← y−X
∑L
l=0 b̄l

r̄0 ← r̄ + Xb̄0

σ2b ← arg maxσ2b
ELBOridge(r̄0;σ2b , σ

2)

(b̄0, b̄
2
0)← Ridge(r̄0,X, σ

2, σ2b )

r̄ ← r̄0 −Xb̄0

for l in 1,..., L do

r̄l ← r̄ + Xbl

σ20l ← arg maxσ20
lSER(r̄l;σ

2
0, σ

2)

(αl, µ1l, σ1l)← SER(X, r̄l;σ
2, σ20l)

b̄l ← αl ◦ µ1l

b̄2
l ← αl ◦ (σ21l + µ21l)

r̄ ← r̄l −Xb̄l

σ2 ← ERSS(y, b̄, b̄2)/n.

return σ2, σ2b ,σ
2
0,α,σ1,µ1

The inner loop and updating σ2 are all steps in IBSS, and we can directly use them. The

first few lines in the outer loop is simply a ridge regression. We can solve it analytically.

3.4 The choice of L

The result in Wang et al. (2018) shows, the key inferences of SuSiE are robust to overstating

L. When L is larger than necessary, the method will be uncertain about where to place the
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extra effects, hence it will distribute them broadly among many variables. Therefore, this

is going to have very little impact on the inference. For the SuSiE-mixture model, those

reasons still hold. Thus in practice, we can appropriately over-estimate the value of L, and

do not have to worry about that.
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CHAPTER 4

SIMULATION

In the simulation, we set n = 400, p = 1000, σ = 1, σb = 0.1, σ0l = 5, only 3 out of the 1000

variables are true factors. We run Algorithm 1 with a large range of candidates of (σb/σ).

When we set the value of (σb/σ) in Algorithm 1 to be exactly the true value 0.1, the

following Figure 4.1 shows the result.

Figure 4.1: Compare the PIP of SuSiE and SuSiE-mixture.True label=0 denotes the irrele-
vant variables, and True label=1 denotes the true factors.

We can see that SuSiE has a lot of false discoveries: the PIP for those irrelevant variables

are non-zero. And SuSiE-mixture shows a perfect selection, the PIP for irrelevant variables

are close to 0, and the PIP for true factors are close to 1.
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We calculate the KL-divergence between the true label and the predicted PIP. They

both are equivalent to a Bernoulli variable. We can easily get the KL-divergence to be

− log(P{Correct prediction}). And we sum up the KL-divergence for all variables to measure

how good is the estimated PIP. A smaller KL-divergence indicates a better prediction.

Then we choose a wide range of (σb/σ) in Algorithm 1, and compare the KL-divergence

with the SuSiE model. The result is showed in the following Figure 4.2.

Figure 4.2: SuSiE-mixture with different prior variance

The result shows that the SuSiE-mixture model gets the perfect prediction within a wide

range of choices of σb. The KL-divergence to the true label is almost constantly zero, much

lower than the SuSiE model, indicating a better performance.
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CHAPTER 5

DISCUSSION

We extend the spike-and-slab prior in the SuSiE model to mixture-Gaussian prior, and get

more flexibility. We also show that the SuSie-mixture model has better performance in

variable selection.

However, this method suffers from the following limitations. Normally the value of

(σ2b/σ
2) is unknown to us, and we need to use Algorithm 2 for fitting the SuSiE-mixture

model. However, when the data has a large scale, it can be really slow. The ridge regression

step in each iteration has O(p3) time complexity, but in real data set we often have p > 104,

and the computation becomes a big trouble. Moreover, in the simulation study we find that

SuSiE-mixture has a much worse convergence than SuSiE, taking much more iterations and

time. Further studies to accelerate the fitting will be helpful.
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APPENDICES

A. Derivation of Algorithm 1

Assume the ratio of variance (σ2b/σ
2) is known. Let

∑L
l=1 bl = b. Since

y = Xb0 + X
L∑
l=1

bl + e = Xb0 + Xb + e, (5.1)

where

Xb0 ∼ N(0, σ2bXXT ), e ∼ N(0, σ2In). (5.2)

Thus

y|X,b, σ2, σ2b ∼ N
(
Xb, σ2bXXT + σ2In

)
. (5.3)

For simplicity, let

S =

(
σ2b
σ2

XXT + In

)
. (5.4)

It is easy to see that S is positive definite. Then we find the Cholesky decomposition of

S. Let L be a lower triangular matrix s.t. LLT = S, i.e. (L−1)TL−1 = S−1. Further more

we let ỹ = L−1y, X̃ = L−1X.

Then

ỹ|X,b, σ2, σ2b ∼ N(L−1Xb, σ2L−1S(L−1)T ). (5.5)

That is,

ỹ|X̃,b, σ2, σ2b ∼ N(X̃b, σ2I). (5.6)

This formula together with the prior assumption on b, will be exactly the SuSiE model

setting

ỹ = X̃b + e, e ∼ N(0, σ2In), (5.7)
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We can easily solve this with susie(X̃, ỹ, L).

B. Derivation of variational inference method

Update σ2b by maximizing the evidence lowerbound (ELBO)

In the ridge regression step, the ELBO can be written as

ELBO(q0)

=Eq0 log p(X, r̄0; β)− Eq0 log q0(β)

=Eq0
[
log(N(r̄0;Xβ, σ2I) ·N(β; 0, σ2b I))− log q0(β)

]
=Eq0

log

exp
{

(β̂TridgeX
T r̄0 − ‖r̄0‖22)/(2σ2)

}
σnσ

p
b

·N(β; β̂ridge, Σ̂)

− log q0(β)

+ const

=(β̂TridgeX
T r̄0 − ‖r̄0‖22)/(2σ2)− n log σ − p log σb −KL(q0||N(β̂ridge,Σridge)) + const

≥(β̂TridgeX
T r̄0 − ‖r̄0‖22)/(2σ2)− n log σ − p log σb + const := G

The equality holds when q0(β) is exactly N(β̂ridge,Σridge).

Let

∂G

∂σb
=

1

2σ2
(r̄T0 XS

−1(
2σ2

σ3b
)S−1XT r̄0)− p

σb
= 0. (5.8)

Thus

‖(σ2bX
TX + σ2I)−1XT r̄0‖22 = p. (5.9)

We can numerically solve this with built-in function optim() in R.
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