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Abstract

When we estimate and compare the gene expression in multiple conditions withe the same
reference level, we want to estimate them jointly using mash to gain more power. But failure
to deal with the induced inherent correlation among deviations causes many false discoveries.
Here, we describe a method to include the inherent correlations and thus reduce the number of
false discoveries dramatically.

1 Introduction

The multivariate adaptive shrinkage, mash, method could estimate and compare many effects across
multiple conditions jointly (Urbut et al., 2018). This flexible approach can be used to identify
“significant” non-zero effects and compare effects, identify differences in effect among conditions.
For example, in eQTL (expression Quantitative Trait Locus) studies, researchers are often interested
in identifying tissue-specific effects, in the belief that they may have particular biological relevance.

However, in some genomic studies, there might be no obvious “effect” in each condition. We want
to estimate the change in some quantity computed in multiple conditions over a common reference
level. Such analyses are common in practice in case and control literature. Scientists are often
interested in identifying patterns of differential gene regulation under many conditions, compared
to a condition in which there exists no external stimuli. In these cases, differential expression in
any condition is defined as a difference in expression over a common control condition. In other
cases, there might be no control group in a study. The differential expression in any condition can
be defined as a difference in expression over sample mean or median. In both cases, the differential
expression is computed over a common reference level.

The typical approaches to solve this problem (e.g Robinson et al., 2010; López-Kleine and González-
Prieto, 2016) focusing on analyzing differential expression over the reference level in each condition

1



separately, and thus vastly underestimate sharing. The mash method estimates and compares effects
across multiple conditions jointly. It can capture both shared and condition-specific effects and it
is adaptive. It adapts to the patterns present in the data set being analyzed. Although we wish to
take advantage of correlation and thus boost power as in mash, we now must consider the additional
burden of comparing all subsequent conditions to the same reference group. Specifically, comparing
all condition estimates to the same reference condition without accounting for the correlation in
errors artificially induces many false positives, and thus any successful joint method needs to account
for this correlation in the error structure.

Suppose we observe gene expression in R-1 treatments, and we want to compare the expression
with a common control group. On the one hand, simply estimating the expression by subtracting
the mean expression in the control condition from every subsequent condition might create false
positives, because of the inherent correlation in errors. On the other hand, analyzing each condition
separately fails to exploit the power of a joint analysis.

In this paper, we propose a method to apply the mash framework in these situations. We call this
method mash commonbaseline, because there exists no baseline within each condition but each
condition is compared to the same baseline. Our goal is to reduce the number of false positives due
to the inherent correlation induced when comparing all conditions to a common baseline. A quick
review for mash is in Section 2. The method for mash commonbaseline is described in detail in
Section 3. When there is a control group in the study, we estimate the deviation over the control
condition. When there is no control group in the study, we estimate the deviation over the mean.
Section 4 shows the improvement of the mash commonbaseline method through simulations. There
is a drawback when we estimate the deviation over the mean. We discuss it in detail in Section 5,
and propose methods to estimate the deviation over the median. Section 6 shows the improvement
in the real application.

Notations:

We denote matrices by boldface uppercase letters (A), vectors are denoted by boldface lowercase
letters (a), and scalars are denoted by non-boldface letters (a or A). All vectors are column-vectors.
Lowercase letters may represent elements of a vector or matrix if they have subscripts. For example,
aij is the (i, j)th element of A, ai is the ith element of a, and ai is either the ith row or ith column
of A. For indexing, we will generally use capital non-boldface letters to denote the total number of
elements and their lowercase non-boldface versions to denote the index. For example, i = 1, . . . , I.
We denote the matrix transpose by Aᵀ, the matrix inverse by A−1, and the matrix determinant
by det(A).

2 Background

Let bjr (j = 1, ·, J ; r = 1, · · · , R) denote the true value of effect j in condition r. Further let b̂jr
denote the (observed) estimate of this effect, and ŝjr denote the standard error of this estimate.

Let B̂, B and Ŝ denote the corresponding J ×R matrices, and let bj , b̂j denote the j-th row of B
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and B̂.

The mash model assumes the vector b̂j is normally distributed about the true effects bj , with

variance-covariance matrix ŜjV Ŝj , and that the true effects follow a mixture of multivariate normal.
That is,

b̂j |bj , Ŝj ∼ NR(bj , ŜjV Ŝj) (2.1)

bj |π ∼
K∑
k=1

L∑
l=1

πklNR(0, ωlUk) (2.2)

whereNR(·;µ,Σ) denotes the density of the R-dimensional multivariate normal (MVN) distribution
with mean µ and covariance matrix Σ, and the scaling parameters ω1, · · · , ωL are fixed on a dense
grid. V is a full rank correlation matrix that accounts for correlations among the measurements in
the R conditions, and Ŝ is the R×R diagonal matrix with diagonal elements (ŝj1, · · · , ŝjR).

If V is known, we can use it to estimate π; otherwise, we estimate V and π iteratively. In the
method we introduced below (Section 3), we cannot estimate V . We assume it is known.

The steps of mash are:

1. Create a list of both data-driven and canonical covariance matrices, U .

The data-driven covariance matrices are estimated based on the rows of B̂ that likely have an
effect in at least one condition. One way to find these “strongest effects” is to run univariate
adaptive shrinkage ash (Stephens, 2016) on the effects in each condition r separately, and
computed lfsrjr for each gene j (see below for details about lfsr). We then choose the
effects j for which at least one of the conditions showed a significant effect in this univariate
analyses (minr lfsrjr < 0.05). Let J̃ denote the number of selected “strongest effects”,
and let Z̃ denote the column-centered J̃ × R matrix of Z scores for these “strong effects”.
We apply Principal Component Analysis (through Singular Value Decomposition, SVD) and
Sparse Factor Analysis (FLASH Wang and Stephens (2018)) on Z̃. SVD yields a set of
eigenvalues and eigenvectors of Z̃. Let λp, vp denote the pth eigenvalue and corresponding
(right) eigenvector. FLASH yields

Z̃ = LF T +E (2.3)

where L is a sparse J̃×Q matrix of loadings, and F is a R×Q matrix of factors. We construct
the following data-driven covariance matrices:

(a) Ũ1 = 1
J̃
Z̃T Z̃, the empirical covariance matrix of Z̃.

(b) Ũ2 = 1
J̃

∑P
p=1 λ

2
pvpv

T
p , which is a rank P approximation of the covariance matrix of Z̃.

(c) The rank 1 matrices that reflect the effects captured by the p-th eigenvector in the PCA,

(d) Ũ3 = 1
J̃

(LF T )T (LF T ), which is a rank Q approximation of the covariance matrix of Z̃.

(e) The rank 1 matrices that reflect the effects captured by the q-th factor in the FLASH
analysis
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We perform extreme deconvolution for the above Uk.

2. Estimate unknown weights π̂ for covariance matrices (and correlation V̂ ).

3. Compute, for each j, the posterior distribution p(bj |b̂j ,U , π̂,V ).

To measure “significance” of a effect bjr, we use the local false sign rate (lfsr), which is defined as

lfsrjr = min{p(bjr ≥ 0|b̂j , Ŝ, π̂,U), p(bjr ≤ 0|b̂j , Ŝ, π̂,U)} (2.4)

lfsr is the probability that we would get the sign of effect incorrect if we were to use our best guess
of the sign. Therefore, a small lfsr indicates high confidence in determining the sign of an effect.
Notice that lfsr is more conservative than the local false discovery rate (lfdr), since we can infer lfsr
≥ lfdr from the definition.

3 Method

The traditional mash model can be used when there is obvious “effect” in each condition. When
there is no obvious “effect” in each condition, we estimate the change in some quantity computed
in multiple conditions over a reference level. In this section, we discuss the details of our method.

We observe a vector of uncertered noisy mean feature expression ĉj across R conditions, for each
gene j,

ĉj |cj ∼ NR(cj , ŜjV Ŝj) (3.1)

where cj represents the “true” means across R conditions, Ŝj is the R × R diagonal matrix with
diagonal elements

(
ŝj1, · · · , ŝjR

)
, the standard error of the observations. V is a full rank correlation

matrix that accounts for correlations among the measurements in the R conditions. In settings
where measurements in the R conditions are independent one would set V = IR, the R×R identity
matrix. We assume the correlation V is known and full rank.

We can express the “true” cj as a mixture of multivariate Normals which centered at an underlying
mean µj1R, each covariance matrix Uk represents the underlying covariance matrix from which the
“true” expression cj are thought to arise. The scaling parameters ω1, · · · , ωL are fixed on a dense
grid.

cj |π ∼ µj1R +
∑
k,l

πklNR(0, wlUk) (3.2)

Our goal is to fit a model for the distribution of a R-1 dimensional deviations, δ̂j , using a set of J
observational data points that measure the observed deviations over the reference level. To get the
deviations, we use contrast matrix.

Let L denotes the R − 1 × R matrix of contrasts which removes expression in the reference level
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from each subsequent condition. When there is a control condition, suppose it is the last condition
in the data, the contrast matrix takes the form:

L =


1 0 0 · · · −1
0 1 0 −1
...

. . .

0 0 · · · 1 −1


R−1×R

(3.3)

When there is no common control condition in the study, we estimate the deviation as differences
with the mean. The contrast matrix takes the form:

L =


R−1
R − 1

R − 1
R · · · − 1

R

− 1
R

R−1
R − 1

R − 1
R

...
. . .

− 1
R − 1

R · · · R−1
R − 1

R


R−1×R

(3.4)

Using the contrast matrix L, the deviations can be obtained,

δ̂j = Lĉj ∼ NR−1(Lcj ,LŜjV ŜjL
T ) (3.5)

The “true” deviations have expression

δj = Lcj |π ∼ µjL1R +
∑
k,l

πklNR−1(0, wlLUkL
T )

Denote LUkL
T using U ′k

δj |π ∼
∑
k,l

πklNR−1(0, wlU
′
k) (3.6)

The distribution 3.5, 3.6 fit in mash framework.

Note that the contrast matrix L has only R− 1 rows, instead of R. This requirement is necessary,
since mash framework requires the full rank correlation among observed deviations. When there
is a control condition, the deviation for the control condition is always zero. When we compare
the expression with mean, any deviation can be expressed using the rest deviations, i.e. δ̂j,i =

ĉj,i − ¯̂cj = −
∑R

r=1,r 6=i(ĉj,r − ¯̂cj) = −
∑R

r=1,r 6=i δ̂j,r. We must discard the deviation in one condition
to perform the analysis.

The contrast matrix L defined in (3.4) discards the deviation in the last condition. The deviations
are ĉj,1 − ¯̂cj , ĉj,2 − ¯̂cj , · · · , ĉj,R−1 − ¯̂cj . However, the contrast matrix L can discard any condition
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from ĉj,1 − ¯̂cj , · · · , ĉj,R − ¯̂cj . The choice of the discarded condition has no influence on the result.

We can fit the mash model as described in Section 2 using 3.5, 3.6. The quantity of interest now is
δj , which represents the true deviations from the reference level. The δj can be treated as the effects
in mash. With the model, we get the posterior distribution of true deviations δj . The estimation
and inference can therefore obtained.

The critical step above is the covariance of the observed deviations. Even if the original covariance
matrix is diagonal (ŜjV Ŝj is diagonal), and thus the observed noisy mean expression measurements

in each condition are independent, LŜjV ŜjL
T is not diagonal and thus accounts for the induced

correlation in errors.

For deviations over means, the posteriors from the mash model are only for the first R-1 conditions.
Using a linear transformation of the posteriors, we can obtain the posteriors for all R conditions.
The linear transformation corresponding to contrast matrix 3.4 is

A =

 IR−1

−1 · · · −1


R×(R−1)

(3.7)

Aδj = δj,1, · · · , δj,R−1,−
R−1∑
r=1

δj,r (3.8)

All procedures are implemented in mash framework. The R package is available at https://

github.com/stephenslab/mashr.

4 Simulations

In this section, we demonstrate that failing to account for the inherent correlations induced by
subtracting the same noisy observed reference measurement from each subsequent condition in-
flates our identification of true deviations. We compare the results from our new method mash

commonbaseline with the one from mash that ignoring the induced correlations, we call this
independent mash model. We show the simulation with the control group and without the control
group.
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4.1 Study with a control condition

We first show the improvement for study with a control condition. Suppose the last condition in
the simulation study below is the control condition.

4.1.1 Without Deviation

There is no true deviation exists in this simulation.

cj = µj110 (4.1)

ĉj ∼ N10(µj110,
1

2
I) (4.2)

Let L be the contrast matrix as defined in (3.3). The mash commonbaseline uses the model

δ̂j ∼ N9(0,
1

2
LLT ) (4.3)

However, one might subtract the expression in the control condition from every subsequent condi-
tion, and ignore the induced correlations, which leads to the independent mash model.

δ̂j ∼ N9(0, I) (4.4)

The variance of δ̂jr is calculated by

Var(ĉjr − ĉjR|cjr, cjR) = Var(ĉjr|cjr) + Var(ĉjR|cjR) =
1

2
+

1

2
= 1 r = 1, · · · , R− 1 (4.5)

The correlation between δ̂jr and δ̂js′ , r 6= r′, is ignored.

The mash commonbaseline method yields a much higher log-likelihood. Including the induced
correlations, there are no discoveries which is as we expected. Because the true deviations, δj ,
are zero for all samples. However, the independent mash model produces around 30% discoveries,
which are all false discoveries.

Moreover, the independent mash model produces wrong weights on the covariance structures.
The estimated weights for covariance matrices are plotted in Figure 1. The mash commonbaseline

method produces the correct weights on covariance matrices, the majority of the weights is on the
null matrix. In contrast, the independent mash model puts the majority of weights on the equal
effect matrix. This is caused by the ignorance of correlations in errors. From this simulation, we
see the improvement of false discoveries by mash commonbaseline clearly.
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(a) mashcommonbaseline
Estimated Weights

(b) independent mash

Estimated Weights

Figure 1: Without deviation data: Estimated weights for covariance matrices

4.1.2 With Deviation

We add signal to a number of “non-null” simulations such that for any subgroup r = 1, · · · , R− 1,
an expression different from the control exists:

cj1...(R−1) = cjR1R−1 + δj (4.6)

ĉj |cj ∼ NR(cj ,
1

2
I) (4.7)

We simulated data with 10 conditions, and four different types of deviations δj : null (δj = 0), inde-
pendent among conditions, condition-specific in condition 1 (δj1 6= 0), and shared (equal deviations
in all sub-conditions, δj1···9 = f19). The data contains 10% non-null deviations

δj ∼
9

10
N9(0,0) +

1

30
N9(0, I) +

1

30
N9(0, e1e

T
1 ) +

1

30
N9(0,11T ) (4.8)

Let L be the contrast matrix as in (3.3). Therefore,

δ̂j |δj = Lĉj |cj ∼ N9(δj ,
1

2
LLT ) (4.9)

Figure 2a compares the accuracy of deviation size estimates, as measured by the relative root mean
squared error (RRMSE), which is the RMSE of the estimates divided by the RMSE achieved by
simply using the original observed estimates δ̂j for the deviations. It can be written as

RRMSE =

√√√√E((δjr − ˆ̂
δjr)2)

E((δjr − δ̂jr)2)
(4.10)
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Both methods have RRMSE < 1, indicating a substantial improvement in accuracy compared
with the original observed effects δ̂j . As expected, the mash commonbaseline outperforms the
independent mash model. The accuracy of the estimated deviations improved.

For the ROC curves in Figure 2b, the True Positive Rate and False Positive Rate are computed at
any given threshold t as

True Positive Rate =
|CS ∩ S|
|T |

False Positive Rate =
|N ∩ S|
|N |

(4.11)

where S is the set of significant results at threshold t, CS is the set of correctly-signed results, T is
the set of true (non-zero) deviations and N is the set of null deviations:

S = {j, r : lfsrjr ≤ t} (4.12)

CS = {j, r : E(δjr|∆̂)× δjr > 0} (4.13)

N = {j, r : δjr = 0} (4.14)

T = {j, r : δjr 6= 0} (4.15)

We require the estimated sign (+/-) of each significant deviation to be correct to be considered a
“true positive”. Our mash commonbaseline method outperforms the independent mash method.

(a) Relative Root Mean Squared Error (RRMSE)

(b) ROC curve

Figure 2: With deviation data: Relative Root Mean Square Error (RRMSE) and the ROC curve
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4.2 Study without control condition

We show the improvement for study without control condition here. We estimate the change in
expression computed in R conditions over their mean.

4.2.1 Without Deviation

The simulation scheme is similar as in Section 4.1.1.

ĉj |cj ∼ N10(cj , I) (4.16)

cj = µj110 (4.17)

Let L be the contrast matrix as defined in (3.4). The mash commonbaseline has the model

δ̂j |δj ∼ N9(δj ,LL
T ) (4.18)

δj = 0 (4.19)

In the independent mash model, the correlation among δ̂jr and δ̂jr′ is ignored.

δ̂j |δj ∼ N9(δj ,S) (4.20)

where S is a diagonal matrix with diagonal elements

Var(ĉj,r − ¯̂cj |cj) =
R− 1

R
(4.21)

The mash commonbaseline method yields higher log-likelihood. There are no discoveries from both
models, since the true deviations are all zero. Both methods yields large weights on the null matrix
(See Figure 3). When there are no signals, subtracting the mean directly from the data performs
as well as the mash commonbaseline model.

4.2.2 With Deviation

We simulate data with 10 conditions, half of the samples have equal expression among conditions.
In the rest samples, half have higher and equal expression in the first 2 conditions, half have higher
expression in the last condition.

cj ∼ µj110 +
1

2
N10(0,0) +

1

4
N10(0, 9

(
121

T
2 02×8

08×2 08×8

)
) +

1

4
N10(0, 9

(
09×9 09

0T
9 1

)
) (4.22)

ĉj |cj ∼ N10(cj , I) (4.23)
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(a) mashcommonbaseline
Estimated Weights

(b) independent mash

Estimated Weights

Figure 3: Without deviation data: Estimated weights for covariance matrices

Let L be the contrast matrix in (3.4) that subtract the mean from each sample.

δ̂j |δj ∼ N9(δj ,LL
T ) (4.24)

Half of the true deviations are zero, quarter of the deviations δj have correlation that the first two
conditions are negatively correlated with the rest conditions. For the rest quarter of the deviations
δj , the first 9 conditions are negatively correlated with the last condition.

There are two ways to fit the wrong model. One is the independent mash model, which ignores the
induced correlation (4.20). The other one is the constant mash model, which ignores the induced
correlation and mis-calculates the standard error, i.e treat the subtracted mean as constant:

δ̂j |δj ∼ N9(δj , I) (4.25)

We apply six models using the simulated data.

1. mash commonbaseline, discard the 10-th condition (m.10)

2. mash commonbaseline, discard the 9-th condition (m.9)

3. independent mash model, discard the 10-th condition (Indep.10)

4. independent mash model, discard the 9-th condition (Indep.9)

5. constant mash model, discard the 10-th condition (Const.10)

6. constant mash model, discard the 9-th condition (Const.9)

To better capture the covariance structures, we use mash framework with data driven covariance
matrices.
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From Figure 4a, 4b, we can see the results from m.9 and m.10 have similar accuracy and power,
which confirms our statement in Section 3. mash commonbaseline is robust to the choice of the
discarded condition. In contrast, the performance of independent mash and constant mash model
depend heavily on the choice of discarded condition.

Based on our simulation scheme, quarter of the samples have higher expression in the 10-th condi-
tion. When we subtract the mean and discard the 10-th condition, the deviations in the first 9 con-
ditions are equal with small magnitude. The independent mash and constant mash model fail to
recognize this pattern, and shrink all deviations to zero, whereas the mash commonbaseline model
captures the pattern successfully. Ignoring the induced correlation in Indep.10 and Const.10

causes the low accuracy of the estimated deviation and low power.

When we discard the 9-th condition, the mash commonbaseline, independent mash and constant

mash models perform similarly. The reason is that the deviations in the remaining conditions are
obvious and the model can capture the pattern even we ignore the induced correlation. There is
not much benefit by using mash commonbaseline model in this scenario.

The independent mash and constant mash model perform very similarly. The variance of the
deviation is R−1

R in independent mash model, 1 in constant mash model. When the number of
conditions is large, the difference is negligible.

(a) Relative Root Mean Square Error (RRMSE)

(b) ROC curve

Figure 4: Comparison of methods on data with true deviations: (a) shows the accuracy of the
estimated deviations. (b) shows the ROC curve.
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5 Compare with Median

From simulations above, it is clear that including the inherent correlation induced when comparing
all conditions to a common control, the number of false positives reduce dramatically. When the
comparison is made with the mean, we need to discard the deviation in one condition to get rid of
the perfect dependency among deviations. If the discarded condition does not have large deviation,
the improvement from mash commonbaseline is not obvious. The reason is that the quantity
subtracted from each condition is a summary statistics, which contains information from every
condition. The correlation between the deviations becomes weaker, and it is negligible. However,
when we compare the expression with a common control condition, the correlation is not negligible.

We illustrate with a simple example that the standard error is common among different conditions
and the measurements in different conditions are independent.

Var(cj |cj) = s2IR (5.1)

If the last condition is the control group, the deviation is cjr − cjR, the correlation between two
deviations is 1

2 .

Var(ĉjr − ĉjR|cj) = 2s2 Cov(ĉjr − ĉjR, ĉjr′ − ĉjR|cj) = s2 r 6= r′

Cor(ĉjr − ĉjR, ĉjr′ − ĉjR|cj) =
1

2

In contrast, if the deviation is computed over the mean, the correlation between two deviations is
1

1−R .

Var(ĉjr − ¯̂cj |cj) =
R

R− 1
s2 Cov(ĉjr − ¯̂cj , ĉjr′ − ¯̂cj |cj) = −s

2

R
r 6= r′

Cor(ĉjr − ¯̂cj , ĉjr′ − ¯̂cj |cj) =
1

1−R

Ignoring the correlation 0.5 will cause the false discovery. However, the correlation 1
1−R is close to

zero if the number of conditions R is large, so it can be ignored.

There is one drawback when we subtract the mean from the quantity in each condition. When
some conditions have large positive deviations over the mean, the other conditions must have
negative deviations. For instance, we have result from a gene expression experiments. The first two
conditions among R conditions have high gene expression level, the other conditions have nearly
zero expression level. Subtracting mean from each condition leads to high positive deviations for the
first two conditions, negative deviations for the other conditions. Using our mash commonbaseline

framework, we conclude that all conditions have deviations, but the deviations in the first two
conditions have opposite sign than others. However, it is more parsimonious to conclude that the
first two conditions are different from others. It is better to report “condition specific” effect than
a shared effect at all but one condition. To achieve this parsimonious statement, we could estimate
the change in the quantity computed in R conditions over their median.
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If we compare the gene expression with the median among R conditions in the above example, we
can identify that the first two conditions have high gene expression level comparing with other con-
ditions. Since subtracting median would not cause the rank deficiency problem in the correlation
matrix V , we do not need to discard deviations in any condition. However, there is no contrast ma-
trix exists to get the deviations over median. Therefore, we cannot use the mash commonbaseline

method directly. There are several ways to analysis the deviation over median using mash.

1. Subtract median directly:

Like mean, median is also a summary statistics. Using the idea discussed above, we could
ignore the correlation among deviations. The variance of median in a multivariate normal
distribution is hard to compute. To the best of our knowledge, there is no result about the
explicit variance of the median exists in literature. But there is no need to worry about it.
We see the independent mash and constant mash model perform similarly from Section 4.
This allows us to subtract the median directly from the observations without considering the
variance and the correlation, and identify deviations using mash.

2. Estimate from posterior samples:

We can first get the posterior samples of deviations over mean using mash commonbaseline.
Then estimate the posterior for

δ̂j −median(δ̂j) = (ĉj − ¯̂cj)−median(ĉj − ¯̂cj) = ĉj −median(ĉj)

which is same as we perform mash commonbaseline on deviation over median.

We can summarize the posterior information based on the samples.

We apply the mash median model on the simulated data in Section 4. When there is no deviation
in the data, the simulation scheme is same as 4.16, 4.17. There is no false discovery using both
methods. When there are true deviations, the simulation scheme is same as 4.22, 4.23. Figure
5a, 5b shows the RRMSE and the ROC curve. Both methods have RRMSE < 1, indicating a
substantial improvement in accuracy compared with the original observed effects δ̂j . The method
1, subtracting median directly from the data, performs slightly better.

6 Application

To illustrate the power of our mash commonbaseline approach, we applied it to data in which
gene expression across multiple conditions had indeed been compared to a control. Blischak et al.
(2015) analyzed gene expression in cells infected with 8 strains of Tuberculin bacteria and sought
to understand changes in gene expression in comparison to uninfected controls.

We consider the gene expression patterns identified 18 hours post-infection in our analysis. The
gene expression readings (see Blischak et al., 2015, for details) represent batch-corrected log2 counts
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(a) Relative Root Mean Square Error (RRMSE)

(b) ROC curve

Figure 5: Comparison of methods on data with true deviations: (a) shows the accuracy of the
estimated deviations. (b) shows the ROC curve.

per million for the 12,728 Ensemble genes, each has 156 samples gene expression data across the
8 conditions and control. To obtain summary statistics for each gene-condition pair, we used
the Empirical Bayes linear model method Limma (Smyth, 2004) to estimate ĉj of mean gene

expression and corresponding standard errors. The [j, r] entry of the matrix Ĉ represents the mean
gene expression of gene j for individuals with infected condition r. There are 9 conditions in total
including the uninfected control.

Denote the matrix of observed deviations, ∆̂ = ĈLT , L is defined as in 3.3. We run univariate
adaptive shrinkage ash (Stephens, 2016) on the deviations in each bacteria infection r separately,
and computed lfsrjr for each gene j. We then choose the genes j for which at least one of the
bacteria showed a significant deviation in this univariate analyses (minr lfsrjr < 0.05).

We use these strongest genes to estimate the data-driven covariance matrices as described in Section
2 and use the larger 12,728 gene data set to estimate weights and compute posteriors for all 12,728
genes.

Figure 6a shows the patterns cormotif identified by Blischak et al. (2015). The four differential
expressed patterns are collapsed into the primary patterns of sharing in mash commonbaseline. In
mash commonbaseline, we see that the majority of the hierarchical weight falls on the pattern that
reflect broad sharing of both sign and magnitude across conditions. Yersinia and Salmonella

seem to share effects more closely (see Figure 6b, 6c).

Controlling the local false sign rate at 0.05, there are 3,009 genes differentially expressed for at
least one bacteria infection. Blischak et al. (2015) discovers much more genes than our mash
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commonbaseline method, which may contains large amount of false discoveries.

We assess the quantitative similarity of deviations by sign and magnitude. Here we define similar
in magnitude to mean both the same sign and within a factor of 2 of one another. Figure 6d and 6e
show the heatmap for the proportion of differentially expressed genes have similar magnitude and
sign in each pair of bacteria infection. Deviations tend to be shared by sign much more commonly
than they are shared by magnitude, reflecting the fact that to be shared by magnitude must be
shared by sign. Almost all genes share the deviation direction among bacteria. The magnitude of
deviations in Rv+ and BCG are not similar with Yersinia and Salmonella. The observation agrees
the primary pattern from the mash commonbaseline model.

Compare with median

We treat the expression level in uninfected control as the baseline in the analysis above. Here, we
change the baseline to median. We compare the gene expression in the uninfected control and 8
bacteria infections with their median.

The observed gene expression matrix Ĉ12,728×9 is same as above. The row of observed deviations

∆̂ is ĉj −median(ĉj). We run mash as described in Section 2. We see that the majority of the
hierarchical weight from mash falls on the pattern that Yersinia and Salmonella are negatively
correlated with the uninfected control (Figure 7a, 7b). Yersinia and Salmonella share deviations,
and have opposite direction than deviation in uninfected condition.

Controlling the local false sign rate at 0.05, there are 3,068 genes differentially expressed in at least
one condition, which is similar as we compare the expression with the uninfected control. We also
assess the quantitative similarity of deviations by sign and magnitude. Figure 7c and 7d show the
heatmap for the proportion of differentially expressed genes have similar magnitude and sign in
each pair of infect condition. As we expected, Yersinia and Salmonella have similar deviations.
Rv+ and BCG have similar deviations, and the deviations have opposite sign with Yersinia and
Salmonella. The observations agree with the primary pattern from the mash model.

7 Discussion

The number of false positives reduce dramatically, when we include the inherent correlation induced
when comparing all conditions to a common control. When there is no control condition in the
study, we can compare the quantity with their mean and we need to discard the deviations in
one condition to get rid of the perfect dependency among deviations. If the discarded condition
does not have large deviation, the improvement from mash commonbaseline is not obvious. If the
discarded condition has some high deviations, the results from mash commonbaseline has higher
accuracy and larger power. In the real life, we don’t know whether the discarded condition has any
large deviations. In this case, it is better to use mash commonbaseline model when the comparison
is made with the mean.
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When there is no control condition in the study, we can also compare the quantity with their median,
which provides more parsimonious conclusion. There are two ways to estimate the deviations over
median, 1. subtract median from all conditions and use mash, 2. estimate from posteriors of
deviations over mean. These two methods perform similarly. We recommend the first one, because
it is simpler and faster than the sampling method.
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López-Kleine, L. and C. González-Prieto (2016, 7). Challenges Analyzing RNA-Seq Gene Expres-
sion Data. Open Journal of Statistics 06 (04), 628–636.

Robinson, M. D., D. J. McCarthy, and G. K. Smyth (2010, 1). edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics 26 (1), 139–140.

Smyth, G. K. (2004). Linear Models and Empirical Bayes Methods for Assessing Differential Expres-
sion in Microarray Experiments. Statistical Applications in Genetics and Molecular Biology 3 (1),
1–25.

Stephens, M. (2016, 10). False discovery rates: a new deal. Biostatistics 18 (2), kxw041.

Urbut, S. M., G. Wang, P. Carbonetto, and M. Stephens (2018, 9). Flexible statistical methods for
estimating and testing effects in genomic studies with multiple conditions. bioRxiv , 096552.

Wang, W. and M. Stephens (2018, 2). Empirical Bayes Matrix Factorization.

17



(a) Original cormotif clusters

(b) Heatmap of the patterns of sharing (c) The first eigenvector of 6b

(d) Pairwise sharing by Magnitude (e) Pairwise sharing by Sign

Figure 6: The top plot 6a shows the five patterns cormotif identified. (Blischak et al., 2015). The
plot 6b and 6c show the pattern of sharing with the most weight in mash commonbaseline. The
left plot is the heatmap of the scaled covariance matrix. It’s first eigenvector is in the right plot.
The bottom plots show the similarity of deviations by sign and magnitude. The left plot shows the
proportion of significant genes that are “shared in magnitude”. The right plot shows the proportion
of significant genes that are “shared in sign”.
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(a) Heatmap of the patterns of sharing (b) The first eigenvector of 7a

(c) Pairwise sharing by Magnitude (d) Pairwise sharing by Sign

Figure 7: The top figures 7a and 7b show the pattern of sharing with the most weight in mash.
The left plot is the heatmap of the scaled covariance matrix. It’s first eigenvector is in the right
plot. The bottom plots show the similarity of deviations by sign and magnitude. The left plot
shows the proportion of significant genes that are “shared in magnitude”. The right plot shows the
proportion of significant genes that are “shared in sign”
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