Warning in as.POSIXlt.POSIXct(Sys.time()): unknown timezone 'zone/tz/2017c.
1.0/zoneinfo/America/Chicago'
Last updated: 2017-11-17
Code version: 850ca41
library(lattice)
library(ggplot2)
library(colorRamps)
library(mashr)
Loading required package: ashr
library(corrplot)
corrplot 0.84 loaded
data = readRDS('../data/ImmuneQTLSummary.4MASH.rds')
data$max$se = data$max$beta/data$max$z
data$null$se = data$null$beta / data$null$z
K = 10
P = 5
vhat = 0
if (vhat == 1) {
V = cor(data$null$z[which(apply(abs(data$null$z),1, max) < 2),])
} else {
V = diag(ncol(data$null$z))
}
mash_data = mashr::set_mash_data(Bhat = as.matrix(data$max$beta),
Shat = as.matrix(data$max$se),
V = as.matrix(V),
alpha = 1)
The model is fitted in Mash model EZ V0
# EZ
resEZ = readRDS('../output/ImmuneEZ.V0.center.mash_model.K10.P5.rds')
resEZ$result = readRDS('../output/ImmuneEZ.V0.center.mash_posterior.K10.P5.rds')
The log-likelihood of fit is
get_loglik(resEZ)
[1] 3185703
Here is a plot of weights learned.
options(repr.plot.width=12, repr.plot.height=4)
barplot(get_estimated_pi(resEZ), las = 2, cex.names = 0.7)
Most of the mass is on the null, PCA1 and equal effects. mash
placed 8.8161% of the mixture components weight on data-driven matrices, 61.9691% weight on equal effects matrix.
Here is a visualization for PCA1, which capture 8.5003% mixture component in these data, (via correlation heatmap):
x <- cov2cor(resEZ$fitted_g$Ulist[["ED_PCA_1"]])
x[x > 1] <- 1
x[x < -1] <- -1
colnames(x) <- colnames(get_lfsr(resEZ))
rownames(x) <- colnames(x)
corrplot.mixed(x, tl.pos="d",upper='color',cl.lim=c(0.2,1), upper.col=colorRampPalette(rev(c("#D73027","#FC8D59","#FEE090","#FFFFBF",
"#E0F3F8","#91BFDB","#4575B4")))(40),
tl.cex=1.2)
The main pattern captured by this component is that the effect of control is strongly correlated with other treatments.
Next we perform SVD on the PCA 1 based covariance matrix, and plot the top eigen vector.
svd.out = svd(resEZ$fitted_g$Ulist[["ED_PCA_1"]])
v = svd.out$v
colnames(v) = colnames(get_lfsr(resEZ))
rownames(v) = colnames(v)
options(repr.plot.width=10, repr.plot.height=5)
for (j in 1:1)
barplot(v[,j]/v[,j][which.max(abs(v[,j]))], cex.names = 0.7,
las = 2, main = paste0("EigenVector ", j, " for PCA-based covariance matrix"))
It captures overall effects of the treatments.
head(get_significant_results(resEZ))
ILMN_1653469_rs2253928 ILMN_1670322_rs2548331 ILMN_1677785_rs28384491
222 1845 2486
ILMN_1683888_rs6849183 ILMN_1697227_rs2279308 ILMN_1701906_rs1699603
3039 4195 4588
mash
uses patterns of sharing to inform estimated effect:Original estimates
MASH
estimates
Here is one example of shinkage:
Original estimates
MASH
estimates
The estimated effects are closer to 0.
Pairwise sharing
x <- get_pairwise_sharing(resEZ)
colnames(x) <- colnames(get_lfsr(resEZ))
rownames(x) <- colnames(x)
x <- x[rev(rownames(x)),rev(colnames(x))]
x[lower.tri(x)] <- NA
clrs <- colorRampPalette(rev(c("#D73027","#FC8D59","#FEE090","#FFFFBF",
"#E0F3F8","#91BFDB","#4575B4")))(64)
n <- nrow(x)
options(repr.plot.width=9, repr.plot.height=9)
print(levelplot(x[n:1,],col.regions = clrs,xlab = "",ylab = "",
colorkey = TRUE, at = seq(0.7,1,length.out = 64),
scales = list(cex = 0.5,x = list(rot = 45))))
Among the 21485 top SNPs, MASH
found 11613 to be significant in at least one treatment. We refer to these as the ‘top eQTLs’.
Using MASH
, we found 11228 genes with an eQTL in control, 11157 genes with an eQTL in lps6h, 11251 genes with an eQTL in lps90, 11430 genes with an eQTL in mdp6h, 11336 genes with an eQTL in mdp90, 11410 genes with an eQTL in rna6h, 11511 genes with an eQTL in rna90.
In the original paper, they identified 717-1653 genes with an eQTL in each condition. So, we found more genes with an eQTL using MASH
.
There are 10639 top eQTLs with significant effects among all treatments.
Find genes having \(\beta_{Trt}\) significantly different from \(\beta_{Ctrl}\), among the top eQTLs. The number in [] is the result from the paper. Note that there are only percentages provided in the paper. Since the number of top eQTLs we found are different, the percentage may not directly comparable.
subset.data = function(data, subset){
data.subset = data
data.subset$Bhat = data$Bhat[subset,]
data.subset$Shat = data$Shat[subset,]
data.subset$Shat_alpha = data$Shat_alpha[subset,]
data.subset
}
eQTL.index.lps6h = get_significant_results(resEZ, conditions = 2)
A.lps6h = rbind(c(1,-1,0,0,0,0,0))
row.names(A.lps6h) = c('Ctrl-lps6h')
resEZ.lps6h = resEZ
eQTL.lps6h = subset.data(mash_data, eQTL.index.lps6h)
resEZ.lps6h$result = mash_compute_posterior_matrices(resEZ, eQTL.lps6h, A=A.lps6h, algorithm.version = 'R')
saveRDS(resEZ.lps6h,
paste0('../output/ImmuneEZ.V',vhat,'.center.resEZ.lps6h.K',K,'.P',P,'.rds'))
resEZ.lps6h = readRDS(paste0('../output/ImmuneEZ.V',vhat,'.center.resEZ.lps6h.K',K,'.P',P,'.rds'))
length(get_significant_results(resEZ.lps6h))
[1] 8348
Using MASH
, we found 74.82% [17%] of lps 6h eQTLs are reQTLs.
resEZ.lps90 = readRDS(paste0('../output/ImmuneEZ.V',vhat,'.center.resEZ.lps90.K',K,'.P',P,'.rds'))
length(get_significant_results(resEZ.lps90))
[1] 7812
We found 69.43% [15%] of lps 90 eQTLs are reQTLs.
resEZ.mdp6h = readRDS(paste0('../output/ImmuneEZ.V',vhat,'.center.resEZ.mdp6h.K',K,'.P',P,'.rds'))
length(get_significant_results(resEZ.mdp6h))
[1] 7527
We found 65.85% [9%] of mdp 6h eQTLs are reQTLs.
resEZ.mdp90 = readRDS(paste0('../output/ImmuneEZ.V',vhat,'center.resEZ.mdp90.K',K,'.P',P,'.rds'))
length(get_significant_results(resEZ.mdp90))
[1] 7040
We found 62.1% [9%] of mdp 90 eQTLs are reQTLs.
resEZ.rna6h = readRDS(paste0('../output/ImmuneEZ.V',vhat,'.center.resEZ.rna6h.K',K,'.P',P,'.rds'))
length(get_significant_results(resEZ.rna6h))
[1] 7050
We found 61.79% [18%] of rna 6h eQTLs are reQTLs.
resEZ.rna90 = readRDS(paste0('../output/ImmuneEZ.V',vhat,'.center.resEZ.rna90.K',K,'.P',P,'.rds'))
length(get_significant_results(resEZ.rna90))
[1] 9643
We found 83.77% [3%] of rna 90 eQTLs are reQTLs.
In the paper, they found 3-18% of cis eQTLs in each condition are reQTLs.
reQTL.index.lps6h = get_significant_results(resEZ.lps6h)
A.lps6hTRT = rbind(c(0,1,0,-1,0,0,0),
c(0,1,0,0,0,-1,0))
row.names(A.lps6hTRT) = c('lps6h-mdp6h', 'lps6h-rna6h')
resEZ.lps6hTRT = resEZ
reQTL.lps6h = subset.data(eQTL.lps6h, reQTL.index.lps6h)
resEZ.lps6hTRT$result = mash_compute_posterior_matrices(resEZ, reQTL.lps6h, A=A.lps6hTRT, algorithm.version = 'R')
saveRDS(resEZ.lps6hTRT,
paste0('../output/ImmuneEZ.V',vhat,'.center.resEZ.lps6hTRT.K',K,'.P',P,'.rds'))
resEZ.lps6hTRT = readRDS(paste0('../output/ImmuneEZ.V',vhat,'.center.resEZ.lps6hTRT.K',K,'.P',P,'.rds'))
length(get_significant_results(resEZ.lps6hTRT))
[1] 7766
We found 81.95% [32%] lps6h reQTLs are stimulus specific compared with mdp6h, 79.38% [34%] lps6h reQTLs are stimulus specific compared with rna6h.
resEZ.lps90TRT = readRDS(paste0('../output/ImmuneEZ.V',vhat,'.center.resEZ.lps90TRT.K',K,'.P',P,'.rds'))
length(get_significant_results(resEZ.lps90TRT))
[1] 7265
We found 78.67% [14%] lps 90min reQTLs are stimulus specific compared with mdp 90min, 76.09% [51%] lps 90min reQTLs are stimulus specific compared with rna 90min.
resEZ.mdp6hTRT = readRDS(paste0('../output/ImmuneEZ.V',vhat,'.center.resEZ.mdp6hTRT.K',K,'.P',P,'.rds'))
length(get_significant_results(resEZ.mdp6hTRT))
[1] 7170
We found 78.92% [15%] mdp 6h reQTLs are stimulus specific compared with lps 6h, 88.72% [13%] mdp 6h reQTLs are stimulus specific compared with rna 6h.
resEZ.mdp90TRT = readRDS(paste0('../output/ImmuneEZ.V',vhat,'.center.resEZ.mdp90TRT.K',K,'.P',P,'.rds'))
length(get_significant_results(resEZ.mdp90TRT))
[1] 6429
We found 77.95% [15%] mdp 90min reQTLs are stimulus specific compared with lps 90min, 66.88% [46%] mdp 90min reQTLs are stimulus specific compared with rna 90min.
resEZ.rna6hTRT = readRDS(paste0('../output/ImmuneEZ.V',vhat,'.center.resEZ.rna6hTRT.K',K,'.P',P,'.rds'))
length(get_significant_results(resEZ.rna6hTRT))
[1] 6688
We found 76.34% [21%] rna 6h reQTLs are stimulus specific compared with lps 6h, 89.18% [45%] rna 6h reQTLs are stimulus specific compared with mdp 6h.
resEZ.rna90TRT = readRDS(paste0('../output/ImmuneEZ.V',vhat,'.center.resEZ.rna90TRT.K',K,'.P',P,'.rds'))
length(get_significant_results(resEZ.rna90TRT))
[1] 7857
We found 72.1% [38%] rna 90min reQTLs are stimulus specific compared with lps 90min, 62.43% [29%] rna 90min reQTLs are stimulus specific compared with mdp 90min.
A.lps6hTime = rbind(c(0,1,-1,0,0,0,0))
row.names(A.lps6hTime) = c('lps6h-lps90')
resEZ.lps6hTime = resEZ
resEZ.lps6hTime$result = mash_compute_posterior_matrices(resEZ, reQTL.lps6h , A=A.lps6hTime, algorithm.version = 'R')
saveRDS(resEZ.lps6hTime,
paste0('../output/ImmuneEZ.V',vhat,'.center.resEZ.lps6hTime.K',K,'.P',P,'.rds'))
resEZ.lps6hTime = readRDS(paste0('../output/ImmuneEZ.V',vhat,'.center.resEZ.lps6hTime.K',K,'.P',P,'.rds'))
length(get_significant_results(resEZ.lps6hTime))
[1] 7541
We found 90.33% [45%] lps6h reQTLs are time point specific compared with lps90min.
resEZ.lps90Time = readRDS(paste0('../output/ImmuneEZ.V',vhat,'.center.resEZ.lps90Time.K',K,'.P',P,'.rds'))
length(get_significant_results(resEZ.lps90Time))
[1] 6945
We found 88.9% [36%] lps 90min reQTLs are time point specific compared with lps6h.
resEZ.mdp6hTime = readRDS(paste0('../output/ImmuneEZ.V',vhat,'.center.resEZ.mdp6hTime.K',K,'.P',P,'.rds'))
length(get_significant_results(resEZ.mdp6hTime))
[1] 6599
We found 78.92% [40%] mdp 6h reQTLs are time point specific compared with mdp 90min.
resEZ.mdp90Time = readRDS(paste0('../output/ImmuneEZ.V',vhat,'.center.resEZ.mdp90Time.K',K,'.P',P,'.rds'))
length(get_significant_results(resEZ.mdp90Time))
[1] 6174
We found 87.7% [38%] mdp 90min reQTLs time point specific compared with mdp 6h.
resEZ.rna6hTime = readRDS(paste0('../output/ImmuneEZ.V',vhat,'.center.resEZ.rna6hTime.K',K,'.P',P,'.rds'))
length(get_significant_results(resEZ.rna6hTime))
[1] 5058
We found 71.74% [64%] rna 6h reQTLs are time point specific compared with rna 90min.
resEZ.rna90Time = readRDS(paste0('../output/ImmuneEZ.V',vhat,'.center.resEZ.rna90Time.K',K,'.P',P,'.rds'))
length(get_significant_results(resEZ.rna90Time))
[1] 6427
We found 66.65% [32%] rna 90min reQTLs are time point specific compared with rna 6h.
sessionInfo()
R version 3.4.2 (2017-09-28)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.1
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] corrplot_0.84 mashr_0.2-4 ashr_2.1-27 colorRamps_2.3
[5] ggplot2_2.2.1 lattice_0.20-35
loaded via a namespace (and not attached):
[1] Rcpp_0.12.13 compiler_3.4.2 git2r_0.19.0
[4] plyr_1.8.4 iterators_1.0.8 tools_3.4.2
[7] digest_0.6.12 evaluate_0.10.1 tibble_1.3.4
[10] gtable_0.2.0 rlang_0.1.2 Matrix_1.2-11
[13] foreach_1.4.3 yaml_2.1.14 parallel_3.4.2
[16] mvtnorm_1.0-6 stringr_1.2.0 knitr_1.17
[19] rprojroot_1.2 grid_3.4.2 rmarkdown_1.7
[22] rmeta_2.16 magrittr_1.5 backports_1.1.1
[25] scales_0.5.0 codetools_0.2-15 htmltools_0.3.6
[28] MASS_7.3-47 assertthat_0.2.0 colorspace_1.3-2
[31] labeling_0.3 stringi_1.1.5 lazyeval_0.2.1
[34] munsell_0.4.3 doParallel_1.0.11 pscl_1.5.2
[37] truncnorm_1.0-7 SQUAREM_2017.10-1
This R Markdown site was created with workflowr