Last updated: 2018-01-28
Loading required package: ashr
\[c_{j} = \mu_{j} 1\] \[\hat{c}_{j} \sim N_{R}(c_{j}, \frac{1}{2}I)\] Let L be the contrast matrix, which comparing each condition with the mean. \[L = \left(\begin{array}{c c c c} \frac{R-1}{R} & -\frac{1}{R} & \cdots & -\frac{1}{R} \\ -\frac{1}{R} & \frac{R-1}{R} & \cdots & -\frac{1}{R} \\ \vdots & \ddots & \ddots & \vdots \\ -\frac{1}{R} & \cdots & \frac{R-1}{R} & -\frac{1}{R} \end{array} \right)_{R-1 \times R}\] There are only R-1 rows, intead of R. Since \(c_{j,R}-\bar{c_{j}} = -\sum_{r=1}^{R-1} (c_{j,r}-\bar{c_{j}})\).
Therefore, \[\hat{\delta}_{j} = L\hat{c}_{j} \sim N_{R-1}(0, \frac{1}{2}LL')\]
We first generate the data:
set.seed(1)
data = sim.contrast1(nsamp = 10000, ncond = 8)
Set up the contrast matrix and the mash contrast data object
L = rbind(c(7/8,-1/8,-1/8,-1/8,-1/8,-1/8,-1/8,-1/8),
c(-1/8,7/8,-1/8,-1/8,-1/8,-1/8,-1/8,-1/8),
c(-1/8,-1/8,7/8,-1/8,-1/8,-1/8,-1/8,-1/8),
c(-1/8,-1/8,-1/8,7/8,-1/8,-1/8,-1/8,-1/8),
c(-1/8,-1/8,-1/8,-1/8,7/8,-1/8,-1/8,-1/8),
c(-1/8,-1/8,-1/8,-1/8,-1/8,7/8,-1/8,-1/8),
c(-1/8,-1/8,-1/8,-1/8,-1/8,-1/8,7/8,-1/8))
row.names(L) = seq(1,7)
mash_data = mash_set_data(Bhat=data$Chat, Shat=data$Shat)
mash_data_L = mash_set_data_contrast(mash_data, L)
Set up the covariance matrices:
U.c = cov_canonical(mash_data_L)
Fit mashcontrast
model
mashcontrast.model = mash(mash_data_L, U.c, algorithm.version = 'R')
- Computing 10000 x 169 likelihood matrix.
- Likelihood calculations took 0.92 seconds.
- Fitting model with 169 mixture components.
- Model fitting took 1.69 seconds.
- Computing posterior matrices.
- Computation allocated took 0.04 seconds.
length(get_significant_results(mashcontrast.model))
[1] 0
There is no discovery, which is as we expected. The true deviations from mean are zero for all samples.
barplot(get_estimated_pi(mashcontrast.model),las = 2, cex.names = 0.7)
If we subtract the mean from the data directly, ignoring the correlation structure. \[Var(\hat{c}_{j,r}-\bar{\hat{c}_{j}}) = \frac{1}{2} - \frac{1}{2R}\]
Indep.data = mash_set_data(Bhat = (data$Chat - apply(data$Chat,1, mean))[,1:7],
Shat = matrix(sqrt(0.5-1/(8*2)), nrow(data$Chat), ncol(data$Chat)-1))
U.c = cov_canonical(mash_data_L)
Indep.model = mash(Indep.data, U.c, algorithm.version = 'R')
- Computing 10000 x 169 likelihood matrix.
- Likelihood calculations took 0.72 seconds.
- Fitting model with 169 mixture components.
- Model fitting took 1.71 seconds.
- Computing posterior matrices.
- Computation allocated took 0.07 seconds.
length(get_significant_results(Indep.model))
[1] 0
There are no false positives.
barplot(get_estimated_pi(Indep.model),las = 2)
When there are no signal, subtracting mean directly from the data performs as good as the mashcommonbaseline
model.
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.2
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] mashr_0.2-4 ashr_2.2-3
loaded via a namespace (and not attached):
[1] Rcpp_0.12.15 knitr_1.17 magrittr_1.5
[4] REBayes_1.2 MASS_7.3-47 doParallel_1.0.11
[7] pscl_1.5.2 SQUAREM_2017.10-1 lattice_0.20-35
[10] foreach_1.4.4 plyr_1.8.4 stringr_1.2.0
[13] tools_3.4.3 parallel_3.4.3 grid_3.4.3
[16] rmeta_2.16 htmltools_0.3.6 iterators_1.0.9
[19] assertthat_0.2.0 yaml_2.1.16 rprojroot_1.2
[22] digest_0.6.13 Matrix_1.2-12 codetools_0.2-15
[25] evaluate_0.10.1 rmarkdown_1.8 stringi_1.1.6
[28] compiler_3.4.3 Rmosek_8.0.69 backports_1.1.2
[31] mvtnorm_1.0-7 truncnorm_1.0-7
This R Markdown site was created with workflowr