Last updated: 2018-06-22
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(1)
The command set.seed(1)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 5afe6c0
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Untracked files:
Untracked: output/44binary.txt.gz
Untracked: output/bmaonlybetasd5lfsr.txt.gz
Untracked: output/bmaonlybetasd5posterior.means.txt.gz
Untracked: output/independentsim.rds
Untracked: output/independentsimesd05.rds
Untracked: output/independentsiminputdata
Untracked: output/independenttest.txt
Untracked: output/indsim05sdlfsr.txt.gz
Untracked: output/indsim05sdposterior.means.txt.gz
Untracked: output/logBFTABLEapril.txt
Untracked: output/noashsharedwithzerobmaalllfsr.txt.gz
Untracked: output/noashsharedwithzerobmaallposterior.means.txt.gz
Untracked: output/sharedashcutoffomega2jun15lfsr.txt.gz
Untracked: output/sharedashcutoffomega2jun15posterior.means.txt.gz
Untracked: output/sharedtest
Untracked: output/simdata.rds
Untracked: output/univariate.ash.lfsr.txt.gz
Untracked: output/univariate.ash.pm.txt.gz
Untracked: output/univariate.ash.pmindesd.txt.gz
Untracked: output/univariate.ashind.lfsresd.txt.gz
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 3ab329f | Peter Carbonetto | 2018-06-18 | Build site. |
Rmd | 70b3ae5 | Gao Wang | 2018-06-16 | Fix misplaced strong.s labels |
Rmd | 6314ce0 | Gao Wang | 2018-06-16 | Relabel ‘test’ to ‘strong’ in data and code |
html | e9c2b58 | Peter Carbonetto | 2018-06-05 | Re-built Uk* webpages after minor revisions. |
html | f01cfd4 | Peter Carbonetto | 2018-06-05 | Re-built Uk3 and Uk4 webpages after renaming the R Markdown files. |
Rmd | f94acfb | Peter Carbonetto | 2018-06-05 | wflow_publish(c(“Uk3.Rmd”, “Uk4.Rmd”)) |
html | aecc7f1 | Peter Carbonetto | 2017-09-20 | Moved doc to docs. |
Rmd | 7072cdb | Peter Carbonetto | 2017-09-20 | Reorganized many of the files. |
“Uk3” is the covariance matrix corresponding to the output of the ExtremeDeconvolution algorithm that was initialized with the rank3 SVD approximation of \(X^TX\). It is the pattern of sharing identified from the dominant covariance matrix (the one with the largest mixture weight).
Here we plot the correlation matrix and the first 3 eigenvectors of “Uk3”. This provides a visualization of the primary patterns of genetic sharing identified by our method, mash. This code should closely reproduce Figure 3 of the paper.
First, we load a couple plotting packages used in the code chunks below.
library(lattice)
library(colorRamps)
We load some GTEx summary statistics, as well as some of the results generated from the mash analysis of the GTEx data.
covmat <- readRDS(paste("../output/MatrixEQTLSumStats.Portable.Z.coved.K3.P3",
"lite.single.expanded.rds",sep = "."))
pis <- readRDS(paste("../output/MatrixEQTLSumStats.Portable.Z.coved.K3.P3",
"lite.single.expanded.V1.pihat.rds",sep = "."))$pihat
z.stat <- readRDS("../data/MatrixEQTLSumStats.Portable.Z.rds")$strong.z
pi.mat <- matrix(pis[-length(pis)],ncol = 54,nrow = 22,byrow = TRUE)
names <- colnames(z.stat)
colnames(pi.mat) <-
c("ID","X'X","SVD","F1","F2","F3","F4","F5","SFA_Rank5",names,"ALL")
Compute the correlations from the \(k=3\) covariance matrix.
k <- 3
x <- cov2cor(covmat[[k]])
x[x < 0] <- 0
Next, we load the tissue indices and tissue names:
colnames(x) <- names
rownames(x) <- names
h <- read.table("../data/uk3rowindices.txt")[,1]
For the plots of the eigenvectors, we load the colours that are conventionally used to represent the tissues in plots.
missing.tissues <- c(7,8,19,20,24,25,31,34,37)
color.gtex <- read.table("../data/GTExColors.txt",sep = "\t",
comment.char = '')[-missing.tissues,]
The posterior mixture weights give the relative importance of the covariance matrices for capturing patterns in the data.
barplot(colSums(pi.mat),las = 2,cex.names = 0.5)
Version | Author | Date |
---|---|---|
f01cfd4 | Peter Carbonetto | 2018-06-05 |
Here we see that the SVD component has the largest weight.
Now we produce the heatmap showing the full covariance matrix.
smat <- (x[(h),(h)])
smat[lower.tri(smat)] <- NA
clrs <- colorRampPalette(rev(c("#D73027","#FC8D59","#FEE090","#FFFFBF",
"#E0F3F8","#91BFDB","#4575B4")))(64)
lat <- x[rev(h),rev(h)]
lat[lower.tri(lat)] <- NA
n <- nrow(lat)
print(levelplot(lat[n:1,],col.regions = clrs,xlab = "",ylab = "",
colorkey = TRUE,at = seq(0,1,length.out = 64),
scales = list(cex = 0.6,x = list(rot = 45))))
Version | Author | Date |
---|---|---|
f01cfd4 | Peter Carbonetto | 2018-06-05 |
The eigenvectors capture the predominant patterns in the Uk3 covariance matrix.
k <- 3
vold <- svd(covmat[[k]])$v
u <- svd(covmat[[k]])$u
d <- svd(covmat[[k]])$d
v <- vold[h,] # Shuffle so correct order
names <- names[h]
color.gtex <- color.gtex[h,]
for (j in 1:3)
barplot(v[,j]/v[,j][which.max(abs(v[,j]))],names = "",cex.names = 0.5,
las = 2,main = paste0("EigenVector",j,"Uk",k),
col = as.character(color.gtex[,2]))
Version | Author | Date |
---|---|---|
f01cfd4 | Peter Carbonetto | 2018-06-05 |
Version | Author | Date |
---|---|---|
f01cfd4 | Peter Carbonetto | 2018-06-05 |
Version | Author | Date |
---|---|---|
f01cfd4 | Peter Carbonetto | 2018-06-05 |
The first eigenvector reflects broad sharing among tissues, with all effects in the same direction; the second eigenvector captures differences between brain (and, to a less extent, testis and pituitary) vs other tissues; the third eigenvector primarily captures effects that are stronger in whole blood than elsewhere.
sessionInfo()
# R version 3.4.3 (2017-11-30)
# Platform: x86_64-apple-darwin15.6.0 (64-bit)
# Running under: macOS High Sierra 10.13.5
#
# Matrix products: default
# BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
# LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
#
# locale:
# [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#
# attached base packages:
# [1] stats graphics grDevices utils datasets methods base
#
# other attached packages:
# [1] colorRamps_2.3 lattice_0.20-35
#
# loaded via a namespace (and not attached):
# [1] workflowr_1.0.1.9000 Rcpp_0.12.17 digest_0.6.15
# [4] rprojroot_1.3-2 R.methodsS3_1.7.1 grid_3.4.3
# [7] backports_1.1.2 git2r_0.21.0 magrittr_1.5
# [10] evaluate_0.10.1 stringi_1.1.7 whisker_0.3-2
# [13] R.oo_1.21.0 R.utils_2.6.0 rmarkdown_1.9
# [16] tools_3.4.3 stringr_1.3.0 yaml_2.1.18
# [19] compiler_3.4.3 htmltools_0.3.6 knitr_1.20
This reproducible R Markdown analysis was created with workflowr 1.0.1.9000