Last updated: 2026-01-20

Checks: 7 0

Knit directory: fashr-paper-stephenslab/

This reproducible R Markdown analysis was created with workflowr (version 1.7.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20251109) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 885ee18. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/site_libs/
    Ignored:    code/.DS_Store
    Ignored:    code/.Rhistory
    Ignored:    data/.DS_Store
    Ignored:    data/toy_example/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  data/appendixB/
    Untracked:  data/dynamic_eQTL_real/
    Untracked:  output/dynamic_eQTL_real/

Unstaged changes:
    Modified:   analysis/dynamic_eQTL_real.rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/dynamic_eQTL_real.Rmd) and HTML (docs/dynamic_eQTL_real.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 885ee18 Ziang Zhang 2026-01-19 update code for non-linear dynamic
html 79ff501 Ziang Zhang 2026-01-19 code refactor
html 0fc1046 Ziang Zhang 2025-12-18 Build site.
html c75cd5f Ziang Zhang 2025-12-18 Build site.
html c3e274e Ziang Zhang 2025-12-17 Build site.
html 2010ecb Ziang Zhang 2025-12-16 Build site.
html 5be62b6 Ziang Zhang 2025-12-12 Build site.
html 83145cc Ziang Zhang 2025-12-12 Build site.
html 36a81a3 Ziang Zhang 2025-11-09 Build site.
html d73f3f1 Ziang Zhang 2025-11-09 Build site.

knitr::opts_chunk$set(fig.width = 8, fig.height = 6, message = FALSE, warning = FALSE)

library(fashr)
library(dplyr)
library(tidyr)
library(stringr)
library(purrr)

# plotting / viz
library(ggplot2)
library(ggrepel)

# paths
result_dir <- file.path(getwd(), "output", "dynamic_eQTL_real")
data_dir   <- file.path(getwd(), "data",   "dynamic_eQTL_real")
code_dir   <- file.path(getwd(), "code",   "dynamic_eQTL_real")

# grids
log_prec  <- seq(0, 10, by = 0.2)
fine_grid <- sort(c(0, exp(-0.5 * log_prec)))

# ----------------------------
# small utilities
# ----------------------------
cache_read <- function(path) if (file.exists(path)) readRDS(path) else NULL
cache_write <- function(x, path) {
  dir.create(dirname(path), showWarnings = FALSE, recursive = TRUE)
  saveRDS(x, path)
  x
}

sample_int <- function(n, size, seed = 1L) {
  set.seed(seed)
  sample.int(n, size = min(size, n))
}

# Parse "ENSG..._rs..." keys once
parse_pair_keys <- function(keys) {
  m <- str_match(keys, "^([^_]+)_(.+)$")
  tibble(key = keys, ens_id = m[,2], rs_id = m[,3])
}

# ----------------------------
# biomaRt mapping with cache
# ----------------------------
get_gene_map <- function(ens_ids, cache_path) {
  ens_ids <- unique(as.character(ens_ids))
  cached <- cache_read(cache_path)
  if (!is.null(cached)) return(cached)

  suppressMessages({
    library(biomaRt)
    mart <- useEnsembl(biomart = "genes", dataset = "hsapiens_gene_ensembl")
  })

  mp <- getBM(
    attributes = c("ensembl_gene_id", "hgnc_symbol"),
    filters    = "ensembl_gene_id",
    values     = ens_ids,
    mart       = mart
  ) %>%
    as_tibble() %>%
    distinct()

  cache_write(mp, cache_path)
}

symbol_of <- function(ens_id, map_tbl) {
  s <- map_tbl$hgnc_symbol[match(ens_id, map_tbl$ensembl_gene_id)]
  ifelse(is.na(s) | s == "", ens_id, s)
}

# (optional) symbol -> ensembl (small list); cache too
symbol_to_ens <- function(symbols, cache_path) {
  symbols <- unique(as.character(symbols))
  cached <- cache_read(cache_path)
  if (!is.null(cached)) return(cached)

  suppressMessages({
    library(biomaRt)
    mart <- useEnsembl(biomart = "genes", dataset = "hsapiens_gene_ensembl")
  })

  mp <- getBM(
    attributes = c("hgnc_symbol", "ensembl_gene_id"),
    filters    = "hgnc_symbol",
    values     = symbols,
    mart       = mart
  ) %>% as_tibble() %>% distinct()

  cache_write(mp, cache_path)
}

# ----------------------------
# index selection helpers
# ----------------------------
pick_best_idx_by_gene <- function(ens_id, pair_tbl, lfdr_vec, which = c("min", "max")) {
  which <- match.arg(which)
  cand <- pair_tbl %>% filter(ens_id == !!ens_id) %>% pull(idx)
  if (length(cand) == 0) return(NA_integer_)
  if (which == "min") cand[which.min(lfdr_vec[cand])] else cand[which.max(lfdr_vec[cand])]
}

pick_idxs_for_genes <- function(ens_ids, pair_tbl, lfdr_vec, which = "min") {
  purrr::map_int(ens_ids, ~pick_best_idx_by_gene(.x, pair_tbl, lfdr_vec, which = which))
}

# ----------------------------
# unified plotting
# ----------------------------
fmt_sci <- function(x, digits = 2) {
  if (length(x) == 0L || is.null(x) || is.na(x)) return("NA")
  formatC(as.numeric(x), format = "e", digits = digits)
}

plot_pair_base <- function(idx,
                           datasets,
                           fash_raw,
                           fash_adj,
                           gene_map,
                           p_lin = NULL,
                           p_non = NULL,
                           smooth_var = seq(0, 15, by = 0.1),
                           add_lm = TRUE,
                           add_quad = TRUE,
                           main_prefix = NULL) {

  dat <- datasets[[idx]]
  x <- dat$x; y <- dat$y; se <- dat$SE
  w <- 1 / (se^2)

  fitted <- predict(fash_adj, index = idx, smooth_var = smooth_var)

  y_min <- min(y - 2 * se, fitted$lower, na.rm = TRUE)
  y_max <- max(y + 2 * se, fitted$upper, na.rm = TRUE)

  # titles
  key_parts <- strsplit(names(datasets)[idx], "_", fixed = TRUE)[[1]]
  ens_id <- key_parts[1]
  rs_id  <- key_parts[2]
  key   <- names(datasets)[idx]
  gsym   <- symbol_of(ens_id, gene_map)

  main_txt <- paste0(gsym, ": ", rs_id)
  if (!is.null(main_prefix)) main_txt <- paste0(main_prefix, " ", main_txt)

  # fits
  lin_fit  <- if (add_lm)   lm(y ~ x, weights = w) else NULL
  quad_fit <- if (add_quad) lm(y ~ poly(x, 2, raw = TRUE), weights = w) else NULL
  x_grid   <- if (add_quad) seq(min(x), max(x), length.out = 200) else NULL
  quad_pred <- if (add_quad) predict(quad_fit, newdata = data.frame(x = x_grid)) else NULL

  plot(x, y, pch = 20, col = "black", xlab = "Time", ylab = "Effect Est", ylim = c(y_min, y_max))
  title(main = main_txt)

  arrows(x0 = x, y0 = y - 2 * se, x1 = x, y1 = y + 2 * se,
         length = 0.05, angle = 90, code = 3, col = "black")

  polygon(c(fitted$x, rev(fitted$x)), c(fitted$lower, rev(fitted$upper)),
          col = rgb(1, 0, 0, 0.3), border = NA)
  lines(fitted$x, fitted$mean, col = "red", lwd = 2)

  if (add_lm)   abline(lin_fit, col = "green", lty = 2, lwd = 1)
  if (add_quad) lines(x_grid, quad_pred, col = "purple", lty = 2, lwd = 1)

  lfdr_before <- fash_raw$lfdr[idx]
  lfdr_after  <- fash_adj$lfdr[idx]
  p_lin_val <- if (!is.null(p_lin) && !is.null(names(p_lin)) && key %in% names(p_lin)) unname(p_lin[[key]]) else NA_real_

  p_non_val <- if (!is.null(p_non) && !is.null(names(p_non)) && key %in% names(p_non)) unname(p_non[[key]]) else NA_real_

  if (!is.na(p_lin_val) || !is.na(p_non_val)) {

    cap <- sprintf("lfdr = %s (%s), p-value = %s (%s)",
                  fmt_sci(lfdr_after), fmt_sci(lfdr_before),
                  fmt_sci(p_lin_val), fmt_sci(p_non_val))

  } else {

    cap <- sprintf("lfdr (raw) = %s, lfdr (adj) = %s", fmt_sci(lfdr_before), fmt_sci(lfdr_after))

  }

  title(sub = cap, cex.sub = 0.8)
  invisible(NULL)
}

plot_many_pairs <- function(idxs, nrow = 2, ncol = 2, ...) {
  dots <- list(...)
  datasets <- dots$datasets

  idxs <- as.integer(idxs)
  idxs <- idxs[!is.na(idxs)]
  idxs <- idxs[idxs >= 1]
  if (!is.null(datasets)) idxs <- idxs[idxs <= length(datasets)]

  if (length(idxs) == 0L) {
    message("plot_many_pairs: no valid indices to plot.")
    return(invisible(NULL))
  }

  oldpar <- par(no.readonly = TRUE)
  on.exit(par(oldpar), add = TRUE)
  par(mfrow = c(nrow, ncol))

  for (idx in idxs) {
    try(plot_pair_base(idx = idx, ...), silent = TRUE)
  }

  invisible(NULL)
}





# ----------------------------
# Strober loading helpers
# ----------------------------
read_strober <- function(path) {
  read.delim(path) %>%
    as_tibble() %>%
    mutate(key = paste0(ensamble_id, "_", rs_id))
}

# ----------------------------
# lfdr vs p-value scatter helper
# ----------------------------
plot_lfdr_vs_p <- function(fash_tbl, strober_df, pval_cutoff, lfdr_cutoff,
                           gene_map, title_text = "",
                           manual_symbol = NULL) {
  eps <- .Machine$double.eps
  if (is.null(manual_symbol)) manual_symbol <- c()

  df <- fash_tbl %>%
    inner_join(strober_df %>% dplyr::select(key, ensamble_id, pvalue), by = "key") %>%
    mutate(ensamble_id = dplyr::coalesce(ensamble_id, ens_id))

  # min per gene
  df_p <- df %>% dplyr::group_by(ensamble_id) %>% dplyr::slice_min(pvalue, n = 1, with_ties = FALSE) %>% dplyr::ungroup()
  df_l <- df %>% dplyr::group_by(ensamble_id) %>% dplyr::slice_min(lfdr_adj, n = 1, with_ties = FALSE) %>% dplyr::ungroup()

  g <- df_p %>% dplyr::select(ensamble_id, pvalue) %>%
    inner_join(df_l %>% dplyr::select(ensamble_id, lfdr_adj), by = "ensamble_id") %>%
    mutate(
      gene_symbol = symbol_of(ensamble_id, gene_map),
      gene_label  = dplyr::coalesce(unname(manual_symbol[ensamble_id]), gene_symbol, ensamble_id),
      neglog_p    = -log10(pmin(pmax(pvalue, eps), 1)),
      neglog_lfdr = -log10(pmin(pmax(lfdr_adj, eps), 1)),
      category = dplyr::case_when(
        pvalue <= pval_cutoff & lfdr_adj <= lfdr_cutoff ~ "Both",
        pvalue <= pval_cutoff & lfdr_adj >  lfdr_cutoff ~ "Strober only",
        pvalue >  pval_cutoff & lfdr_adj <= lfdr_cutoff ~ "FASH only",
        TRUE ~ "Neither"
      ),
      category = factor(category, levels = c("Both", "FASH only", "Strober only", "Neither"))
    )

  top_strober_only <- g %>% dplyr::filter(category == "Strober only") %>% dplyr::arrange(pvalue) %>% dplyr::slice_head(n = 10)
  top_fash_only    <- g %>% dplyr::filter(category == "FASH only")    %>% dplyr::arrange(lfdr_adj) %>% dplyr::slice_head(n = 10)
  top_both         <- g %>% dplyr::filter(category == "Both")         %>% dplyr::arrange(pvalue + lfdr_adj) %>% dplyr::slice_head(n = 10)
  label_df <- dplyr::bind_rows(top_strober_only, top_fash_only, top_both)

  col_map <- c("Both"="#7B3294","FASH only"="#1B9E77","Strober only"="#D95F02","Neither"="grey80")

  ggplot(g, aes(x = neglog_p, y = neglog_lfdr)) +
    geom_point(data = subset(g, category == "Neither"), color = col_map["Neither"], alpha = 0.25, size = 1.8) +
    geom_point(data = subset(g, category != "Neither"), aes(color = category), alpha = 0.8, size = 2.2) +
    scale_color_manual(values = col_map) +
    geom_vline(xintercept = -log10(pval_cutoff), linetype = "dashed") +
    geom_hline(yintercept = -log10(lfdr_cutoff), linetype = "dashed") +
    geom_text_repel(
      data = label_df, aes(label = gene_label, color = category),
      size = 3, box.padding = 0.3, point.padding = 0.5, max.overlaps = Inf, show.legend = FALSE
    ) +
    theme_minimal() +
    theme(text = element_text(size = 16), axis.text = element_text(size = 14), legend.position = "bottom") +
    labs(title = title_text, x = "-log10(p-value)", y = "-log10(lfdr)", color = NULL)
}

Obtain the effect size of eQTLs

We use the processed (expression & genotype) data of Strober et.al, 2019 to perform the eQTL analysis.

For the association testing, we use a linear regression model for each gene-variant pair at each time point. Following the practice in Strober et.al, we adjust for the first 3 PCs.

The code to perform this step can be found in the script dynamic_eQTL_real/00_eQTLs.R from the code directory.

After this step, we have the effect size of eQTLs for each gene-variant pair at each time point, as well as its standard error.

Fitting FASH

To fit the FASH model on \(\{\beta_i(t_j), s_{ij}\}_{i\in N,j \in [16]}\), we consider fitting two FASH models:

  • A FASH model based on first order IWP (testing for dynamic eQTLs: \(H_0: \beta_i(t)=c\)).

  • A FASH model based on second order IWP (testing for nonlinear-dynamic eQTLs: \(H_0: \beta_i(t)=c_1+c_2t\)).

The code to perform this step can be found in the script dynamic_eQTL_real/01_fash.R from the code directory.

We will directly load the fitted FASH models from the output directory.

load(file.path(result_dir, "fash_fit1_all.RData"))

We will load the datasets from the fitted FASH object:

datasets <- fash_fit1$fash_data$data_list
S_list   <- fash_fit1$fash_data$S
for (i in seq_along(datasets)) datasets[[i]]$SE <- S_list[[i]]

pair_tbl <- parse_pair_keys(names(datasets)) %>%
  mutate(idx = row_number())

all_genes <- unique(pair_tbl$ens_id)

gene_map <- get_gene_map(
  ens_ids = all_genes,
  cache_path = file.path(result_dir, "cache_gene_map.rds")
)

In this analysis, we will focus on the FASH(1) model that assumes a first order IWP and tests for dynamic eQTLs.

Let’s take a quick overview of the fitted FASH model:

log_prec <- seq(0,10, by = 0.2)
fine_grid <- sort(c(0, exp(-0.5*log_prec)))

fash_fit1 <- fash(Y = "beta", smooth_var = "time", S = "SE", data_list = datasets,
                  num_basis = 20, order = 1, betaprec = 0,
                  pred_step = 1, penalty = 10, grid = fine_grid,
                  num_cores = num_cores, verbose = TRUE)
save(fash_fit1, file = "./results/fash_fit1_all.RData")
fash_fit1
Fitted fash Object
-------------------
Number of datasets: 1009173
Likelihood: gaussian
Number of PSD grid values: 52 (initial), 9 (non-trivial)
Order of Integrated Wiener Process (IWP): 1

As well as the estimated priors:

fash_fit1$prior_weights
          psd prior_weight
1 0.000000000  0.428990301
2 0.006737947  0.114737367
3 0.040762204  0.101515369
4 0.055023220  0.158922393
5 0.100258844  0.029418944
6 0.122456428  0.111020074
7 0.223130160  0.025050394
8 0.367879441  0.022618462
9 1.000000000  0.007726694

Problem with \(\pi_0\) estimation

If we measure the significance using the false discovery rate, then it is sensitive to the value of \(\pi_0\). The estimated \(\pi_0\) is 0.4289903, which is way too small to be realistic.

One likely reason could be due to model-misspecification under the alternative hypothesis. To account for this, we will consider the following approaches:

(i): Computing a conservative estimate of \(\pi_0\) based on the BF procedure:

fash_fit1_update <- BF_update(fash_fit1, plot = FALSE)
fash_fit1_update$prior_weights
save(fash_fit1_update, file = paste0(result_dir, "/fash_fit1_update.RData"))

The conservative estimate is 0.9381533, which is much more realistic.

(ii): Instead of looking at the FDR which is based on the estimated \(\pi_0\), we can use the minimum local false sign rate (\(\text{min-lfsr}_i\)) to measure significance: \[ \text{min-lfsr}_i = \min_{t} \left\{ \text{lfsr}(W_i(t)) \right\}, \] where \(W_i(t) = \beta_i(t) - \beta_i(0)\).

Let’s compute the significance using the minimum local false sign rate (\(\text{min-lfsr}_i\)):

smooth_var_refined = seq(0,15, by = 0.1)
min_lfsr_summary1 <- min_lfsr_summary(fash_fit1, num_cores = num_cores, smooth_var = smooth_var_refined)
save(min_lfsr_summary1, file = "./results/min_lfsr_summary1.RData")
min_lfsr_summary1_update <- min_lfsr_summary(fash_fit1_update, num_cores = num_cores, smooth_var = smooth_var_refined)
save(min_lfsr_summary1_update, file = "./results/min_lfsr_summary1_update.RData")

Let’s visualize how the min-lfsr compares with the local false discovery rate (lfdr):

load(file.path(result_dir, "min_lfsr_summary1.RData"))

# sample some indices for easy visualization
sample_indices <- sample_int(length(min_lfsr_summary1$min_lfsr), size = 1e5, seed = 1)

min_lfsr1_unadj <- min_lfsr_summary1$min_lfsr[sample_indices]
lfdr1_vec_unadj <- fash_fit1$lfdr[min_lfsr_summary1$index][sample_indices]

plot(lfdr1_vec_unadj, min_lfsr1_unadj, 
     pch = 20, cex = 0.1,
     ylim = c(0,1), xlim = c(0,1),
     xlab = "lfdr", ylab = "min-lfsr", main = "lfdr vs min-lfsr (Un-adjusted)")
lines(c(0,1), c(0,1), col = "red")

Version Author Date
79ff501 Ziang Zhang 2026-01-19
2010ecb Ziang Zhang 2025-12-16

Let’s also visualize the min-lfsr and the lfdr from the BF-updated model:

load(file.path(result_dir, "min_lfsr_summary1_update.RData"))

min_lfsr1 <- min_lfsr_summary1_update$min_lfsr[sample_indices]
lfdr1_vec <- fash_fit1_update$lfdr[min_lfsr_summary1_update$index][sample_indices]

plot(lfdr1_vec, min_lfsr1, 
     pch = 20, cex = 0.1,
     ylim = c(0,1), xlim = c(0,1),
     xlab = "lfdr", ylab = "min-lfsr", main = "lfdr vs min-lfsr (BF-adjusted)")
lines(c(0,1), c(0,1), col = "red")

Version Author Date
79ff501 Ziang Zhang 2026-01-19
2010ecb Ziang Zhang 2025-12-16

Indeed, the min-lfsr tends to be more conservative than the lfdr, especially when \(\hat{\pi_0}\) has not been adjusted using the BF procedure.

Let’s also assess how does the BF-update of \(\pi_0\) affect the min-lfsr.

plot(min_lfsr1_unadj, min_lfsr1, 
     pch = 20, cex = 0.1,
     ylim = c(0,1), xlim = c(0,1),
     xlab = "min-lfsr (unadjusted)", ylab = "min-lfsr", main = "Effect of BF adjustment on min-lfsr")
lines(c(0,1), c(0,1), col = "red")

Version Author Date
79ff501 Ziang Zhang 2026-01-19
2010ecb Ziang Zhang 2025-12-16

Detecting dynamic eQTLs

We will use the updated FASH model (1) to detect dynamic eQTLs.

alpha <- 0.05

test1 <- fdr_control(fash_fit1_update, alpha = alpha, plot = FALSE)
9205 datasets are significant at alpha level 0.05. Total datasets tested: 1009173. 
fash_highlighted1 <- test1$fdr_results$index[test1$fdr_results$FDR <= alpha]

test1_before <- fdr_control(fash_fit1, alpha = alpha, plot = FALSE)
43860 datasets are significant at alpha level 0.05. Total datasets tested: 1009173. 
fash_highlighted1_before <- test1_before$fdr_results$index[test1_before$fdr_results$FDR <= alpha]

How many pairs are detected as dynamic eQTLs?

pairs_highlighted1 <- names(datasets)[fash_highlighted1]
length(pairs_highlighted1)
[1] 9205
length(pairs_highlighted1)/length(datasets)
[1] 0.00912133

What is the number before the BF adjustment?

pairs_highlighted1_before <- names(datasets)[fash_highlighted1_before]
length(pairs_highlighted1_before)
[1] 43860
length(pairs_highlighted1_before)/length(datasets)
[1] 0.04346133

How many unique genes are detected?

genes_highlighted1 <- unique(
  str_split(test1$significant_units, "_") %>% 
  map_chr(1))
length(genes_highlighted1)
[1] 1177
length(genes_highlighted1)/length(all_genes)
[1] 0.1850047

Before the BF adjustment?

genes_highlighted1_before <- unique(pair_tbl$ens_id[pair_tbl$idx %in% fash_highlighted1_before])
length(genes_highlighted1_before)
[1] 3258
length(genes_highlighted1_before)/length(all_genes)
[1] 0.5121031

Let’s see how many pairs and genes remain significant after controlling the min-lfsr:

fash_highlighted1_lfsr <- min_lfsr_summary1_update$index[min_lfsr_summary1_update$fsr <= alpha]
pairs_highlighted1_lfsr <- names(datasets)[fash_highlighted1_lfsr]
length(pairs_highlighted1_lfsr)
[1] 10070
length(pairs_highlighted1_lfsr)/length(datasets)
[1] 0.009978468
genes_highlighted1_lfsr <- unique(pair_tbl$ens_id[pair_tbl$idx %in% fash_highlighted1_lfsr])
length(genes_highlighted1_lfsr)
[1] 1271
length(genes_highlighted1_lfsr)/length(all_genes)
[1] 0.1997799

It seems like once \(\hat{\pi_0}\) is adjusted, there is not much difference between measuring significance using the min-lfsr or the lfdr. From now on, we will consider the pairs that are significant using the lfdr.

Visualize top-ranked pairs for some selected genes:

Version Author Date
79ff501 Ziang Zhang 2026-01-19
2010ecb Ziang Zhang 2025-12-16

Some examples of null pairs:

Version Author Date
79ff501 Ziang Zhang 2026-01-19
2010ecb Ziang Zhang 2025-12-16

Comparing with Strober et.al

We will compare the detected dynamic eQTLs with the results from Strober et.al.

What are the p-value cutoff for linear and non-linear methods in Strober et.al?

pval_cutoff_strober_nonlinear <- max(strober_nonlinear_highlighted$pvalue)
pval_cutoff_strober_linear <- max(strober_linear_highlighted$pvalue)
pval_cutoff_strober_nonlinear
[1] 6.829826e-05
pval_cutoff_strober_linear
[1] 0.0001702417

What are the lfdr cutoff for FASH (order 1) before and after BF adjustment?

lfdr_cutoff1_before <- max(fash_fit1$lfdr[test1$fdr_results$index[test1$fdr_results$FDR <= alpha]])
lfdr_cutoff1_after  <- max(fash_fit1_update$lfdr[test1$fdr_results$index[test1$fdr_results$FDR <= alpha]])
lfdr_cutoff1_before
[1] 0.00856825
lfdr_cutoff1_after
[1] 0.1474749

Let’s take a look at the overlap between the two methods used in Strober et.al and FASH (order 1):

Version Author Date
2010ecb Ziang Zhang 2025-12-16

Produce another Venn diagram for the pairs detected by the three methods:

Version Author Date
2010ecb Ziang Zhang 2025-12-16

Produce similar Venn diagrams for genes and pairs detected by FASH without BF adjustment:

Version Author Date
2010ecb Ziang Zhang 2025-12-16

Version Author Date
2010ecb Ziang Zhang 2025-12-16

There is a large number of genes only detected by FASH (order 1). Let’s take a look at the 4 pairs that are least significant from FASH, and have at least p-value 0.2 from Strober et.al (both linear and non-linear):

[1] TRUE

Version Author Date
79ff501 Ziang Zhang 2026-01-19

Let’s also take a look at the 4 pairs that are most significant from FASH, also with at least p-value 0.2 from Strober et.al (both linear and non-linear):

Version Author Date
79ff501 Ziang Zhang 2026-01-19

Take a look at the p-values and eFDRs from Strober et.al for some of these pairs:

select_gene_id <- gene_map$ensembl_gene_id[gene_map$hgnc_symbol %in% selected_gene_fashr_only]
select_variant_id <- c("rs1593084", "rs114623230", "rs3750076", "rs111950176")

strober_linear %>%
  filter(rs_id %in% select_variant_id, ensamble_id %in% select_gene_id)
# A tibble: 4 × 6
  rs_id       ensamble_id     pvalue  eFDR key                       gene_symbol
  <chr>       <chr>            <dbl> <dbl> <chr>                     <chr>      
1 rs111950176 ENSG00000033170  0.297 0.796 ENSG00000033170_rs111950… FUT8       
2 rs1593084   ENSG00000151388  0.384 0.845 ENSG00000151388_rs1593084 ADAMTS12   
3 rs3750076   ENSG00000122642  0.468 0.878 ENSG00000122642_rs3750076 FKBP9      
4 rs114623230 ENSG00000156928  0.648 0.934 ENSG00000156928_rs114623… MALSU1     
strober_nonlinear %>%
  filter(rs_id %in% select_variant_id, ensamble_id %in% select_gene_id)
# A tibble: 4 × 6
  rs_id       ensamble_id     pvalue  eFDR key                       gene_symbol
  <chr>       <chr>            <dbl> <dbl> <chr>                     <chr>      
1 rs111950176 ENSG00000033170  0.271 0.837 ENSG00000033170_rs111950… FUT8       
2 rs3750076   ENSG00000122642  0.418 0.909 ENSG00000122642_rs3750076 FKBP9      
3 rs1593084   ENSG00000151388  0.471 0.928 ENSG00000151388_rs1593084 ADAMTS12   
4 rs114623230 ENSG00000156928  0.798 0.986 ENSG00000156928_rs114623… MALSU1     

Next, look at some genes that were detected by both FASH and Strober et.al. We will pick the most significant pair for each gene in FASH’s results:

Version Author Date
79ff501 Ziang Zhang 2026-01-19

Let’s also look at the genes that were missed by FASH, but detected by Strober et.al. In this case, we will pick the most significant pair for each gene in Strober et.al’s results:

Version Author Date
79ff501 Ziang Zhang 2026-01-19
c75cd5f Ziang Zhang 2025-12-18
c3e274e Ziang Zhang 2025-12-17
2010ecb Ziang Zhang 2025-12-16

The shape of eFDR (Strober et al) and FDR (FASH):

subset_size <- 10000
subset_seq <- round(seq(1, length(test1$fdr_results$FDR), length.out = subset_size))

plot(
  sort(strober_nonlinear$eFDR)[subset_seq],
  x = subset_seq,
  type = "l",
  col  = "blue",
  lwd  = 2,
  xlab = "Ranked pairs",
  ylab = "FDR",
  lty = "dashed",
  main = ""
)
lines(sort(test1$fdr_results$FDR)[subset_seq], x = subset_seq, col = "red", lty = "solid",  lwd = 2)
lines(sort(strober_linear$eFDR)[subset_seq],   x = subset_seq, col = "green", lty = "dotted", lwd = 2)

legend(
  "topleft",
  legend = c("Strober Quadratic", "Strober Linear", "FASH (1)"),
  col    = c("blue", "green", "red"),
  lty    = c("dashed", "dotted", "solid"),
  lwd    = c(2, 2, 2)
)

Version Author Date
79ff501 Ziang Zhang 2026-01-19
2010ecb Ziang Zhang 2025-12-16
83145cc Ziang Zhang 2025-12-12
d73f3f1 Ziang Zhang 2025-11-09
plot(
  sort(strober_nonlinear$eFDR[strober_nonlinear$eFDR <= 0.05]),
  xlim = c(0, 10000),
  type = "l",
  col  = "blue",
  lwd  = 2,
  lty  = "dashed",
  xlab = "Ranked pairs",
  ylab = "FDR",
  main = "(Zoomed in)"
)
lines(sort(test1$fdr_results$FDR[test1$fdr_results$FDR <= 0.05]), col = "red",   lty = "solid",  lwd = 2)
lines(sort(strober_linear$eFDR[strober_linear$eFDR <= 0.05]),     col = "green", lty = "dotted", lwd = 2)

legend(
  "topleft",
  legend = c("Strober Quadratic", "Strober Linear", "FASH (1)"),
  col    = c("blue", "green", "red"),
  lty    = c("dashed", "dotted", "solid"),
  lwd    = c(2, 2, 2)
)

Version Author Date
79ff501 Ziang Zhang 2026-01-19

Scatterplot of lfdr and p-values from Strober et.al:

fash_tbl <- pair_tbl %>%
  transmute(key, ens_id, rs_id, idx,
            lfdr_raw = fash_fit1$lfdr[idx],
            lfdr_adj = fash_fit1_update$lfdr[idx])

manual_symbol <- c("ENSG00000225485" = "NFATC4")

plot_lfdr_vs_p(
  fash_tbl,
  strober_linear,
  pval_cutoff_strober_linear,
  lfdr_cutoff1_after,
  gene_map,
  title_text = "Scatterplot of lfdr (FASH) vs p-values (Strober Linear)",
  manual_symbol = manual_symbol
)

Version Author Date
79ff501 Ziang Zhang 2026-01-19
2010ecb Ziang Zhang 2025-12-16
83145cc Ziang Zhang 2025-12-12
d73f3f1 Ziang Zhang 2025-11-09
plot_lfdr_vs_p(
  fash_tbl,
  strober_nonlinear,
  pval_cutoff_strober_nonlinear,
  lfdr_cutoff1_after,
  gene_map,
  title_text = "Scatterplot of lfdr (FASH) vs p-values (Strober Quadratic)",
  manual_symbol = manual_symbol
)

Version Author Date
79ff501 Ziang Zhang 2026-01-19
2010ecb Ziang Zhang 2025-12-16
83145cc Ziang Zhang 2025-12-12
d73f3f1 Ziang Zhang 2025-11-09

Classifying dynamic eQTLs

Following the definition in Strober et.al, we will classify the detected dynamic eQTLs into different categories:

  • Early: eQTLs with strongest effect during the first three days: \(\max_{t\leq3} |\beta(t)| - \max_{t> 3} |\beta(t)| > 0\).

  • Late: eQTLs with strongest effect during the last four days: \(\max_{t\geq 12} |\beta(t)| - \max_{t< 12} |\beta(t)| > 0\).

  • Middle: eQTLs with strongest effect during days 4-11: \(\max_{4\leq t\leq 11} |\beta(t)| - \max_{t> 11 | t< 4} |\beta(t)| > 0\).

  • Switch: eQTLs with effect sign switch during the time course such that \(\min\{\max\beta(t)^+,\max\beta(t)^-\}-c>0\) where \(c\) is a threshold that we set to 0.25 (which means with two alleles, the maximal difference of effect size is at least \(\geq 2\times\min\{\max\beta(t)^+,\max\beta(t)^-\}\times2 \geq 2 \times 0.25 \times 2 = 1\)).

We will take a look at the significant pairs detected by FASH (order 1), and classify them based on the false sign rate (lfsr).

Early dynamic eQTLs

smooth_var_refined = seq(0,15, by = 0.1)
functional_early <- function(x){
  max(abs(x[smooth_var_refined <= 3])) - max(abs(x[smooth_var_refined > 3]))
}
testing_early_dyn <- testing_functional(functional_early,
                                              lfsr_cal = function(x){mean(x <= 0)},
                                              fash = fash_fit1,
                                              indices = fash_highlighted1,
                                              smooth_var = smooth_var_refined)

How many pairs and how many unique genes are classified as early dynamic eQTLs?

load(file.path(result_dir, "classify_dyn_eQTLs_early.RData"))
early_indices <- testing_early_dyn$indices[testing_early_dyn$cfsr <= alpha]
length(early_indices)
[1] 129
early_genes <- unique(pair_tbl$ens_id[pair_tbl$idx %in% early_indices])
length(early_genes)
[1] 18

Let’s take a look at the top-ranked early dynamic eQTLs:

Version Author Date
79ff501 Ziang Zhang 2026-01-19
c75cd5f Ziang Zhang 2025-12-18
c3e274e Ziang Zhang 2025-12-17
2010ecb Ziang Zhang 2025-12-16

Middle dynamic eQTLs

functional_middle <- function(x){
  max(abs(x[smooth_var_refined <= 11 & smooth_var_refined >= 4])) - max(abs(x[smooth_var_refined > 11]), abs(x[smooth_var_refined < 4]))
}
testing_middle_dyn <- testing_functional(functional_middle, 
                                               lfsr_cal = function(x){mean(x <= 0)},
                                               fash = fash_fit1, 
                                               indices = fash_highlighted1, 
                                               num_cores = num_cores,
                                               smooth_var = smooth_var_refined)

How many pairs and how many unique genes are classified as middle dynamic eQTLs?

load(file.path(result_dir, "classify_dyn_eQTLs_middle.RData"))
middle_indices <- testing_middle_dyn$indices[testing_middle_dyn$cfsr <= alpha]
length(middle_indices)
[1] 54
middle_genes <- unique(pair_tbl$ens_id[pair_tbl$idx %in% middle_indices])
length(middle_genes)
[1] 17

Take a look at their results:

Version Author Date
79ff501 Ziang Zhang 2026-01-19
c75cd5f Ziang Zhang 2025-12-18
c3e274e Ziang Zhang 2025-12-17
2010ecb Ziang Zhang 2025-12-16

Late dynamic eQTLs

functional_late <- function(x){
  max(abs(x[smooth_var_refined >= 12])) - max(abs(x[smooth_var_refined < 12]))
}
testing_late_dyn <- testing_functional(functional_late, 
                                             lfsr_cal = function(x){mean(x <= 0)},
                                             fash = fash_fit1, 
                                             indices = fash_highlighted1, 
                                             num_cores = num_cores,
                                             smooth_var = smooth_var_refined)

How many pairs and how many unique genes are classified as late dynamic eQTLs?

load(file.path(result_dir, "classify_dyn_eQTLs_late.RData"))
late_indices <- testing_late_dyn$indices[testing_late_dyn$cfsr <= alpha]
length(late_indices)
[1] 50
late_genes <- unique(pair_tbl$ens_id[pair_tbl$idx %in% late_indices])
length(late_genes)
[1] 18

Let’s take a look at the top-ranked late dynamic eQTLs:

Version Author Date
79ff501 Ziang Zhang 2026-01-19
c75cd5f Ziang Zhang 2025-12-18
c3e274e Ziang Zhang 2025-12-17
2010ecb Ziang Zhang 2025-12-16

Switch dynamic eQTLs

How many pairs and how many unique genes are classified as switch dynamic eQTLs?

switch_threshold <- 0.25
functional_switch <- function(x){
  x_pos <- x[x > 0]
  x_neg <- x[x < 0]
  if(length(x_pos) == 0 || length(x_neg) == 0){
    return(0)
  }
  min(max(abs(x_pos)), max(abs(x_neg))) - switch_threshold
}
testing_switch_dyn <- testing_functional(functional_switch, 
                                               lfsr_cal = function(x){mean(x <= 0)},
                                               fash = fash_fit1, 
                                               indices = fash_highlighted1, 
                                               num_cores = num_cores,
                                               smooth_var = smooth_var_refined)
load(file.path(result_dir, "classify_dyn_eQTLs_switch.RData"))
switch_indices <- testing_switch_dyn$indices[testing_switch_dyn$cfsr <= alpha]
length(switch_indices)
[1] 1284
switch_genes <- unique(pair_tbl$ens_id[pair_tbl$idx %in% switch_indices])
length(switch_genes)
[1] 285
selected_switch_genes_symbols <- c("SCN5A", "USP3", "VAMP8", "CCND1")
sym2ens_sw <- symbol_to_ens(selected_switch_genes_symbols, file.path(result_dir, "cache_sym2ens_switch.rds"))
selected_switch_genes <- sym2ens_sw$ensembl_gene_id[match(selected_switch_genes_symbols, sym2ens_sw$hgnc_symbol)]

Let’s take a look at the top-ranked switch dynamic eQTLs:

Version Author Date
79ff501 Ziang Zhang 2026-01-19

Gene Set Enrichment Analysis

library(clusterProfiler)
library(tidyverse)
library(msigdbr)
library(org.Hs.eg.db)
library(cowplot)

m_t2g <- msigdbr(species = "Homo sapiens", category = "H") %>% 
  mutate(ensembl_use = dplyr::coalesce(ensembl_gene, db_ensembl_gene)) %>% 
  dplyr::filter(!is.na(ensembl_use)) %>% 
  dplyr::select(gs_name, ensembl_use) %>%
  dplyr::distinct()

enrich_set <- function(genes_selected,
                       background_gene,
                       q_val_cutoff = 0.05,
                       pvalueCutoff = 0.05) {

  genes_selected_raw  <- unique(as.character(genes_selected))
  background_gene_raw <- unique(as.character(background_gene))

  universe_for_test <- background_gene_raw
  hallmark_genes <- unique(m_t2g$ensembl_use)
  bg_not_in_hallmark <- setdiff(universe_for_test, hallmark_genes)

  dummy_id <- "__DUMMY_BACKGROUND__"

  if (length(bg_not_in_hallmark) > 0) {
    dummy_t2g <- tibble(
      gs_name     = dummy_id,
      ensembl_use = bg_not_in_hallmark
    )
    TERM2GENE_full <- bind_rows(m_t2g, dummy_t2g)
  } else {
    TERM2GENE_full <- m_t2g
  }

  genes_sel_used <- intersect(genes_selected_raw, universe_for_test)

  enrich_res <- enricher(
    gene          = genes_sel_used,
    TERM2GENE     = TERM2GENE_full,
    universe      = universe_for_test,
    pAdjustMethod = "BH",
    qvalueCutoff  = q_val_cutoff,
    pvalueCutoff  = pvalueCutoff
  )

  if (is.null(enrich_res) || nrow(enrich_res@result) == 0L) {
    return(enrich_res)
  }

  df <- enrich_res@result
  df <- df %>% dplyr::filter(ID != dummy_id)

  df$GeneRatio_orig <- df$GeneRatio
  df$BgRatio_orig   <- df$BgRatio

  n_sel_total <- length(genes_sel_used)
  n_bg_total  <- length(universe_for_test)

  df$GeneRatio_fixed <- paste0(df$Count,   "/", n_sel_total)
  df$BgRatio_fixed   <- paste0(df$setSize, "/", n_bg_total)

  enrich_res@result <- df
  enrich_res
}

Among all the genes highlighted by FASH:

result <- enrich_set(genes_selected = genes_highlighted1, background_gene = all_genes)
result@result %>% 
  filter(pvalue < 0.05) %>%
  dplyr::select(GeneRatio, BgRatio, pvalue, qvalue)
                                 GeneRatio BgRatio     pvalue    qvalue
HALLMARK_HYPOXIA                   25/1177 89/6362 0.01692525 0.4356805
HALLMARK_IL6_JAK_STAT3_SIGNALING    8/1177 21/6362 0.02796398 0.4356805
HALLMARK_ESTROGEN_RESPONSE_EARLY   22/1177 82/6362 0.03940505 0.4356805
HALLMARK_ESTROGEN_RESPONSE_LATE    21/1177 79/6362 0.04759267 0.4356805
HALLMARK_ANDROGEN_RESPONSE         16/1177 57/6362 0.04992902 0.4356805

Among the genes highlighted by FASH that are classified as early dynamic eQTLs:

result <- enrich_set(genes_selected = early_genes, background_gene = all_genes)
result@result %>% 
  filter(pvalue < 0.05) %>%
  dplyr::select(GeneRatio, BgRatio, pvalue, qvalue)
                     GeneRatio BgRatio     pvalue     qvalue
HALLMARK_P53_PATHWAY      2/18 83/6362 0.02247213 0.09461948

Among the genes highlighted by FASH that are classified as middle dynamic eQTLs:

result <- enrich_set(genes_selected = middle_genes, background_gene = all_genes)
result@result %>% 
  filter(pvalue < 0.05) %>%
  dplyr::select(GeneRatio, BgRatio, pvalue, qvalue)
                    GeneRatio BgRatio      pvalue     qvalue
HALLMARK_COMPLEMENT      2/17 57/6362 0.009839637 0.09321762

Among the genes highlighted by FASH that are classified as late dynamic eQTLs:

result <- enrich_set(genes_selected = late_genes, background_gene = all_genes)
result@result %>% 
  filter(pvalue < 0.05) %>%
  dplyr::select(GeneRatio, BgRatio, pvalue, qvalue)
                                   GeneRatio  BgRatio      pvalue      qvalue
HALLMARK_ANDROGEN_RESPONSE              3/18  57/6362 0.000505832 0.003727183
HALLMARK_OXIDATIVE_PHOSPHORYLATION      2/18 119/6362 0.043671354 0.160894461

Among the genes highlighted by FASH that are classified as switch dynamic eQTLs:

result <- enrich_set(genes_selected = switch_genes, background_gene = all_genes)
result@result %>% 
  filter(pvalue < 0.05) %>%
  dplyr::select(GeneRatio, BgRatio, pvalue, qvalue)
                                   GeneRatio BgRatio      pvalue     qvalue
HALLMARK_HYPOXIA                      11/285 89/6362 0.001944003 0.04034811
HALLMARK_MYOGENESIS                    9/285 67/6362 0.002780865 0.04034811
HALLMARK_P53_PATHWAY                  10/285 83/6362 0.003726032 0.04034811
HALLMARK_XENOBIOTIC_METABOLISM         9/285 71/6362 0.004143860 0.04034811
HALLMARK_PI3K_AKT_MTOR_SIGNALING       7/285 55/6362 0.010785281 0.07937656
HALLMARK_APOPTOSIS                     8/285 70/6362 0.012426809 0.07937656
HALLMARK_TNFA_SIGNALING_VIA_NFKB       7/285 58/6362 0.014266327 0.07937656
HALLMARK_HEDGEHOG_SIGNALING            3/285 15/6362 0.027120719 0.11736452
HALLMARK_NOTCH_SIGNALING               3/285 15/6362 0.027120719 0.11736452
HALLMARK_INTERFERON_GAMMA_RESPONSE     6/285 56/6362 0.038073617 0.14828672
HALLMARK_IL2_STAT5_SIGNALING           7/285 75/6362 0.049784481 0.17627041

sessionInfo()
R version 4.5.1 (2025-06-13)
Platform: aarch64-apple-darwin20
Running under: macOS Sequoia 15.6.1

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.1

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/Chicago
tzcode source: internal

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] cowplot_1.2.0          org.Hs.eg.db_3.21.0    AnnotationDbi_1.70.0  
 [4] IRanges_2.42.0         S4Vectors_0.46.0       Biobase_2.68.0        
 [7] BiocGenerics_0.54.1    generics_0.1.4         msigdbr_25.1.1        
[10] clusterProfiler_4.16.0 biomaRt_2.64.0         lubridate_1.9.4       
[13] forcats_1.0.1          readr_2.1.6            tibble_3.3.0          
[16] tidyverse_2.0.0        ggVennDiagram_1.5.4    ggrepel_0.9.6         
[19] ggplot2_4.0.1          purrr_1.2.0            stringr_1.6.0         
[22] tidyr_1.3.1            dplyr_1.1.4            fashr_0.1.42          
[25] workflowr_1.7.2       

loaded via a namespace (and not attached):
  [1] RColorBrewer_1.1-3      rstudioapi_0.17.1       jsonlite_2.0.0         
  [4] magrittr_2.0.4          ggtangle_0.0.9          farver_2.1.2           
  [7] rmarkdown_2.30          fs_1.6.6                vctrs_0.6.5            
 [10] memoise_2.0.1           ggtree_3.16.3           mixsqp_0.3-54          
 [13] htmltools_0.5.9         progress_1.2.3          curl_7.0.0             
 [16] gridGraphics_0.5-1      sass_0.4.10             bslib_0.9.0            
 [19] plyr_1.8.9              httr2_1.2.2             cachem_1.1.0           
 [22] TMB_1.9.19              igraph_2.2.1            whisker_0.4.1          
 [25] lifecycle_1.0.4         pkgconfig_2.0.3         gson_0.1.0             
 [28] Matrix_1.7-4            R6_2.6.1                fastmap_1.2.0          
 [31] GenomeInfoDbData_1.2.14 digest_0.6.39           numDeriv_2016.8-1.1    
 [34] aplot_0.2.9             enrichplot_1.28.4       colorspace_2.1-2       
 [37] patchwork_1.3.2         ps_1.9.1                rprojroot_2.1.1        
 [40] irlba_2.3.5.1           RSQLite_2.4.5           filelock_1.0.3         
 [43] labeling_0.4.3          timechange_0.3.0        httr_1.4.7             
 [46] compiler_4.5.1          bit64_4.6.0-1           withr_3.0.2            
 [49] S7_0.2.1                BiocParallel_1.42.2     DBI_1.2.3              
 [52] R.utils_2.13.0          rappdirs_0.3.3          tools_4.5.1            
 [55] otel_0.2.0              ape_5.8-1               httpuv_1.6.16          
 [58] R.oo_1.27.1             glue_1.8.0              callr_3.7.6            
 [61] nlme_3.1-168            GOSemSim_2.34.0         promises_1.5.0         
 [64] grid_4.5.1              getPass_0.2-4           reshape2_1.4.5         
 [67] fgsea_1.34.2            gtable_0.3.6            tzdb_0.5.0             
 [70] R.methodsS3_1.8.2       data.table_1.17.8       hms_1.1.4              
 [73] xml2_1.5.1              utf8_1.2.6              XVector_0.48.0         
 [76] pillar_1.11.1           babelgene_22.9          yulab.utils_0.2.3      
 [79] later_1.4.4             splines_4.5.1           treeio_1.32.0          
 [82] BiocFileCache_2.16.2    lattice_0.22-7          bit_4.6.0              
 [85] tidyselect_1.2.1        GO.db_3.21.0            Biostrings_2.76.0      
 [88] knitr_1.50              git2r_0.36.2            xfun_0.55              
 [91] LaplacesDemon_16.1.6    stringi_1.8.7           UCSC.utils_1.4.0       
 [94] lazyeval_0.2.2          ggfun_0.2.0             yaml_2.3.12            
 [97] evaluate_1.0.5          codetools_0.2-20        qvalue_2.40.0          
[100] ggplotify_0.1.3         cli_3.6.5               processx_3.8.6         
[103] jquerylib_0.1.4         dichromat_2.0-0.1       Rcpp_1.1.0             
[106] GenomeInfoDb_1.44.3     dbplyr_2.5.1            png_0.1-8              
[109] parallel_4.5.1          assertthat_0.2.1        blob_1.2.4             
[112] prettyunits_1.2.0       DOSE_4.2.0              tidytree_0.4.6         
[115] scales_1.4.0            crayon_1.5.3            rlang_1.1.6            
[118] fastmatch_1.1-6         KEGGREST_1.48.1